1
|
Zhou Y, Li H, Gu J, Fu Y, Liu J, Li Z, Li X, Liu X, Qiao Z, Liu Y. Construction of a Fluorescence/Phase-Change Dual-Mode Sensor Based on Carbon Dots/Poly(acrylic acid) for Highly Selective and Sensitive Detection of Ferric Ions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61036-61049. [PMID: 39436028 DOI: 10.1021/acsami.4c14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Fe3+ is one of the crucial metal ions in biological systems, and its excess or deficiency in the body can trigger various diseases, posing a serious threat to human health. Moreover, improper handling or disposal of Fe3+ can lead to water pollution, thereby harming the environment. Therefore, the development of highly selective and sensitive Fe3+ detection probes is particularly urgent. In this paper, a dual-mode sensor based on sol-gel and fluorescence signal responses was developed for the visual detection of Fe3+. The visual sensing method based on the simultaneous response of Fe3+-triggered dual signals can minimize the interference from false-positive signals and enhance detection accuracy. The dual-mode sensor, denoted as PAA@CDs, was constructed by incorporating high-brightness (high fluorescence emission intensity) green-yellow carbon dots (CDs) into poly(acrylic acid) (PAA), which possesses a large number of carboxyl functional groups. Based on the interaction of Fe3+ with the surface functional groups of CDs, nonfluorescent complexes are formed, leading to nonradiative electron transfer, which induces fluorescence quenching and produces a fluorescence signal visible to the naked eye. Additionally, the interaction of Fe3+ with the carboxyl groups of PAA triggers the cross-linking of PAA, causing a sol-gel phase change signal. Consequently, the PAA@CDs exhibit a dual-response signal in Fe3+ detection. Based on the fluorescence method, the linear detection range of PAA@CDs for Fe3+ is 0.05-2.60 mM with a limit of detection (LOD) of 5.14 μM. Meanwhile, using the sol-gel method, the linear detection range is 0.02-2.20 mM, and the LOD is 42.5 μM. Furthermore, the PAA@CDs probes can be successfully applied to the detection of Fe3+ in real water samples, demonstrating their potential value in the analysis of real samples containing multiple ions.
Collapse
Affiliation(s)
- Yao Zhou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Huidong Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Junqi Gu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yonglin Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jingchun Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Zhaoyang Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xinlong Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xunyong Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Zhuhui Qiao
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Yi Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| |
Collapse
|
2
|
S Oliveira MJ, Bianchi-Carvalho I, G Rubira RJ, Sánchez-Cortés S, L Constantino CJ. Plasmonic Ag Nanoparticles: Correlating Nanofabrication and Aggregation for SERS Detection of Thiabendazole Pesticide. ACS OMEGA 2024; 9:42571-42581. [PMID: 39431073 PMCID: PMC11483382 DOI: 10.1021/acsomega.4c07586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024]
Abstract
The level of aggregation and aggregate morphology of metallic nanoparticles are factors that influence the SERS signal (surface-enhanced Raman scattering), affecting reproducibility and sensitivity. This study presents a systematic evaluation of the colloidal aggregation on the SERS signal by combining transmission electron microscopy and UV-vis extinction spectroscopy. It focuses on the effect of two methods of sample preparation ("external standard method-ESM" and "standard addition method-SAM") on the SERS signal using the fungicide thiabendazole (TBZ) in Ag colloid as a probe molecule. The TBZ critical concentration (concentration for which SERS reaches the maximum intensity) was 6.0 × 10-6 mol/L for ESM and 1.5 × 10-6 mol/L for SAM. Besides, TBZ exhibited a sigmoid-type isotherm for ESM, indicating formation of a TBZ first layer on Ag nanoparticles at lower concentrations (Ag aggregates more compact; size <500 nm) and TBZ multilayers at higher concentrations (Ag aggregates more branched; >2 μm). For SAM, the TBZ first layer formation was also observed at lower concentrations (Ag aggregates more branched; <2 μm). However, at higher concentrations, the Ag colloid degradation/precipitation was observed (Ag aggregates more compact; >2 μm). The Ag aggregation mechanisms align with reaction-limited colloidal aggregation at lower concentrations and diffusion-limited colloidal aggregation at higher concentrations. We believe these results contribute to the SERS research field despite all of the work already done over its 50-year history.
Collapse
Affiliation(s)
- Marcelo J. S Oliveira
- School
of Technology and Sciences (FCT), Physics Department, Universidade Estadual Paulista “Júlio de Mesquita Filho”
(UNESP), Presidente
Prudente 19060-900, São
Paulo, Brazil
| | - Isabela Bianchi-Carvalho
- School
of Technology and Sciences (FCT), Physics Department, Universidade Estadual Paulista “Júlio de Mesquita Filho”
(UNESP), Presidente
Prudente 19060-900, São
Paulo, Brazil
| | - Rafael J. G Rubira
- Universidade
Estadual Paulista “Júlio de Mesquita Filho” (UNESP),
Institute of Geosciences and Exact Sciences (IGCE), Physics Department, Rio Claro 13506-900, São Paulo, Brazil
| | - Santiago Sánchez-Cortés
- Instituto
de Estructura de la Materia (IEM), Consejo Superior de Investigaciones
Científicas (CSIC), 28006 Madrid, Spain
| | - Carlos J. L Constantino
- School
of Technology and Sciences (FCT), Physics Department, Universidade Estadual Paulista “Júlio de Mesquita Filho”
(UNESP), Presidente
Prudente 19060-900, São
Paulo, Brazil
| |
Collapse
|
3
|
Ivanišević I. The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:3692. [PMID: 37050752 PMCID: PMC10099384 DOI: 10.3390/s23073692] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
With rapidly increasing environmental pollution, there is an urgent need for the development of fast, low-cost, and effective sensing devices for the detection of various organic and inorganic substances. Silver nanoparticles (AgNPs) are well known for their superior optoelectronic and physicochemical properties, and have, therefore, attracted a great deal of interest in the sensor arena. The introduction of AgNPs onto the surface of two-dimensional (2D) structures, incorporation into conductive polymers, or within three-dimensional (3D) nanohybrid architectures is a common strategy to fabricate novel platforms with improved chemical and physical properties for analyte sensing. In the first section of this review, the main wet chemical reduction approaches for the successful synthesis of functional AgNPs for electrochemical sensing applications are discussed. Then, a brief section on the sensing principles of voltammetric and amperometric sensors is given. The current utilization of silver nanoparticles and silver-based composite nanomaterials for the fabrication of voltammetric and amperometric sensors as novel platforms for the detection of environmental pollutants in water matrices is summarized. Finally, the current challenges and future directions for the nanosilver-based electrochemical sensing of environmental pollutants are outlined.
Collapse
Affiliation(s)
- Irena Ivanišević
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Ivanišević I, Kovačić M, Zubak M, Ressler A, Krivačić S, Katančić Z, Gudan Pavlović I, Kassal P. Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234252. [PMID: 36500875 PMCID: PMC9739383 DOI: 10.3390/nano12234252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/14/2023]
Abstract
The large-scale manufacturing of flexible electronics is nowadays based on inkjet printing technology using specially formulated conductive inks, but achieving adequate wetting of different surfaces remains a challenge. In this work, the development of a silver nanoparticle-based functional ink for printing on flexible paper and plastic substrates is demonstrated. Amphiphilic silver nanoparticles with narrow particle size distribution and good dispersibility were prepared via a two-step wet chemical synthesis procedure. First, silver nanoparticles capped with poly(acrylic acid) were prepared, followed by an amidation reaction with 3-morpholynopropylamine (MPA) to increase their lipophilicity. Density functional theory (DFT) calculations were performed to study the interactions between the particles and the dispersion medium in detail. The amphiphilic nanoparticles were dispersed in solvents of different polarity and their physicochemical and rheological properties were determined. A stable ink containing 10 wt% amphiphilic silver nanoparticles was formulated and inkjet-printed on different surfaces, followed by intense pulsed light (IPL) sintering. Low sheet resistances of 3.85 Ω sq-1, 0.57 Ω sq-1 and 19.7 Ω sq-1 were obtained for the paper, coated poly(ethylene terephthalate) (PET) and uncoated polyimide (PI) flexible substrates, respectively. Application of the nanoparticle ink for printed electronics was demonstrated via a simple flexible LED circuit.
Collapse
Affiliation(s)
- Irena Ivanišević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marin Kovačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marko Zubak
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, P.O. Box 589, 33014 Tampere, Finland
| | - Sara Krivačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Zvonimir Katančić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Iva Gudan Pavlović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Petar Kassal
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
5
|
Fabrication of an All-Solid-State Ammonium Paper Electrode Using a Graphite-Polyvinyl Butyral Transducer Layer. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A planar solid-state ammonium-selective electrode, employing a composite mediator layer of graphite particles embedded in a polyvinyl butyral matrix on top of an inkjet-printed silver electrode, is presented in this paper. The effect of graphite powder mass fraction on the magnitude of the potentiometric response of the sensor was systematically verified using a batch-mode and a flow injection measurement setup. Under steady-state conditions, the paper electrode provided a Nernstian response of 57.30 mV/pNH4 over the concentration range of 10−5 M to 10−1 M with a detection limit of 4.8 × 10−6 M, while the analytical performance of the array in flow mode showed a narrower linear range (10−4 M to 10−1 M; 60.91 mV/pNH4 slope) with a LOD value of 5.6 × 10−5 M. The experimental results indicate that the prepared electrode exhibited high stability and fast response to different molar concentrations of ammonium chloride solutions. The pH-response of the paper NH4-ISE was also investigated, and the sensor remained stable in the pH range of 2.5–8.5. The potentiometric sensor presented here is simple, lightweight and inexpensive, with a potential application for in-situ analysis of environmental water samples.
Collapse
|