1
|
Johnson ZT, Ellis G, Pola CC, Banwart C, McCormick A, Miliao GL, Duong D, Opare-Addo J, Sista H, Smith EA, Hu H, Gomes CL, Claussen JC. Enhanced Laser-Induced Graphene Microfluidic Integrated Sensors (LIGMIS) for On-Site Biomedical and Environmental Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500262. [PMID: 40195914 DOI: 10.1002/smll.202500262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/12/2025] [Indexed: 04/09/2025]
Abstract
The convergence of microfluidic and electrochemical biosensor technologies offers significant potential for rapid, in-field diagnostics in biomedical and environmental applications. Traditional systems face challenges in cost, scalability, and operational complexity, especially in remote settings. Addressing these issues, laser-induced graphene microfluidic integrated sensors (LIGMIS) are presented as an innovative platform that integrates microfluidics and electrochemical sensors both comprised of laser-induced graphene. This study advances the LIGMIS concept by resolving issues of uneven fluid transport, increased hydrophobicity during storage, and sensor biofunctionalization challenges. Key innovations include Y-shaped reservoirs for consistent fluid flow, hydrophilic polyethyleneimine coatings to maintain wettability, and separable microfluidic and electrochemical components enabling isolated electrode nanoparticle metallization and biofunctionalization. Multiplexed electrochemical detection of the neonicotinoid imidacloprid and nitrate ions in environmental water samples yields detection limits of 707 nm and 10-5.4 m with wide sensing ranges of 5-100 µm and 10-5-10-1 m, respectively. Similarly, uric acid and calcium ions are detected in saliva, demonstrating detection limits of 217 nm and 10-5.3 m with sensing ranges of 10-50 µm, and 10-5-10-2.5 m, respectively. Overall, this biosensing demonstrates the capability of the LIGMIS platform for multiplexed detection in biologically complex solutions, with applications in environmental water quality monitoring and oral cancer screening.
Collapse
Affiliation(s)
- Zachary T Johnson
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Griffin Ellis
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Cicero C Pola
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA
| | - Christopher Banwart
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Abby McCormick
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Gustavo L Miliao
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Duy Duong
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Jemima Opare-Addo
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
- The Ames Laboratory, U.S. Department of Energy, Ames, IA, 50011, USA
| | - Harsha Sista
- Department of Aerospace Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Emily A Smith
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
- The Ames Laboratory, U.S. Department of Energy, Ames, IA, 50011, USA
| | - Hui Hu
- Department of Aerospace Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
2
|
Veloso WB, Meloni GN, Arantes IVS, Pradela-Filho LA, Muñoz RAA, Paixão TRLC. Gold film deposition by infrared laser photothermal treatment on 3D-printed electrodes: electrochemical performance enhancement and application. Analyst 2024; 149:3900-3909. [PMID: 38912921 DOI: 10.1039/d4an00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
3D printing has attracted the interest of researchers due to its creative freedom, low cost, and ease of operation. Because of these features, this technology has produced different types of electroanalytical platforms. Despite their popularity, the thermoplastic composites used for electrode fabrication typically have high electrical resistance, resulting in devices with poor electrochemical performance. Herein, we propose a new strategy to improve the electrochemical performance of 3D-printed electrodes and to gain chemical selectivity towards glucose detection. The approach involves synthesising a nanostructured gold film using an infrared laser source directly on the surface of low-contact resistance 3D-printed electrodes. The laser parameters, such as power, focal distance, and beam scan rate, were carefully optimised for the modification steps. Scanning electronic microscopy and energy-dispersive X-ray spectroscopy confirmed the morphology and composition of the nanostructured gold film. After modification, the resulting electrodes were able to selectively detect glucose, encouraging their use for sensing applications. When compared with a gold disc electrode, the gold-modified 3D-printed electrode provided a 44-fold current increase for glucose oxidation. As proof of concept, the devices were utilised for the non-enzymatic catalytic determination of glucose in drink samples, demonstrating the gold film's catalytic nature and confirming the analytical applicability with more precise results than commercial glucometers.
Collapse
Affiliation(s)
- William B Veloso
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Gabriel N Meloni
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Iana V S Arantes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Lauro A Pradela-Filho
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, MG, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Thaweeskulchai T, Sakdaphetsiri K, Schulte A. Ten years of laser-induced graphene: impact and future prospect on biomedical, healthcare, and wearable technology. Mikrochim Acta 2024; 191:292. [PMID: 38687361 DOI: 10.1007/s00604-024-06350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Since its introduction in 2014, laser-induced graphene (LIG) from commercial polymers has been gaining interests in both academic and industrial sectors. This can be clearly seen from its mass adoption in various fields ranging from energy storage and sensing platforms to biomedical applications. LIG is a 3-dimensional, nanoporous graphene structure with highly tuneable electrical, physical, and chemical properties. LIG can be easily produced by single-step laser scribing at normal room temperature and pressure using easily accessible commercial level laser machines and materials. With the increasing demand for novel wearable devices for biomedical applications, LIG on flexible substrates can readily serve as a technological platform to be further developed for biomedical applications such as point-of-care (POC) testing and wearable devices for healthcare monitoring system. This review will provide a comprehensive grounding on LIG from its inception and fabrication mechanism to the characterization of its key functional properties. The exploration of biomedicals applications in the form of wearable and point-of-care devices will then be presented. Issue of health risk from accidental exposure to LIG will be covered. Then LIG-based wearable devices will be compared to devices of different materials. Finally, we discuss the implementation of Internet of Medical Things (IoMT) to wearable devices and explore and speculate on its potentials and challenges.
Collapse
Affiliation(s)
- Thana Thaweeskulchai
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wang Chan Valley, Rayong, 21210, Thailand.
| | - Kittiya Sakdaphetsiri
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wang Chan Valley, Rayong, 21210, Thailand
| | - Albert Schulte
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wang Chan Valley, Rayong, 21210, Thailand
| |
Collapse
|
4
|
Li Y, Kong Y, Hu Y, Li Y, Asrosa R, Zhang W, Deka Boruah B, Yetisen AK, Davenport A, Lee TC, Li B. A paper-based dual functional biosensor for safe and user-friendly point-of-care urine analysis. LAB ON A CHIP 2024; 24:2454-2467. [PMID: 38644805 PMCID: PMC11060138 DOI: 10.1039/d4lc00163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Safe, accurate, and reliable analysis of urinary biomarkers is clinically important for early detection and monitoring of the progression of chronic kidney disease (CKD), as it has become one of the world's most prevalent non-communicable diseases. However, current technologies for measuring urinary biomarkers are either time-consuming and limited to well-equipped hospitals or lack the necessary sensitivity for quantitative analysis and post a health risk to frontline practitioners. Here we report a robust paper-based dual functional biosensor, which is integrated with the clinical urine sampling vial, for the simultaneous and quantitative analysis of pH and glucose in urine. The pH sensor was fabricated by electrochemically depositing IrOx onto a paper substrate using optimised parameters, which enabled an ultrahigh sensitivity of 71.58 mV pH-1. Glucose oxidase (GOx) was used in combination with an electrochemically deposited Prussian blue layer for the detection of glucose, and its performance was enhanced by gold nanoparticles (AuNPs), chitosan, and graphite composites, achieving a sensitivity of 1.5 μA mM-1. This dual function biosensor was validated using clinical urine samples, where a correlation coefficient of 0.96 for pH and 0.98 for glucose detection was achieved with commercial methods as references. More importantly, the urine sampling vial was kept sealed throughout the sample-to-result process, which minimised the health risk to frontline practitioners and simplified the diagnostic procedures. This diagnostic platform, therefore, holds high promise as a rapid, accurate, safe, and user-friendly point-of-care (POC) technology for the analysis of urinary biomarkers in frontline clinical settings.
Collapse
Affiliation(s)
- Yujia Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
- Department of Chemistry, University College London, London, WC1E 7JE, UK
| | - Yingqi Kong
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
- Department of Chemistry, University College London, London, WC1E 7JE, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yixuan Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
- Department of Chemistry, University College London, London, WC1E 7JE, UK
| | - Rica Asrosa
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
- Department of Chemistry, University College London, London, WC1E 7JE, UK
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Sumatera Utara, Medan 20155, Sumatera Utara, Indonesia
| | - Wenyu Zhang
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Buddha Deka Boruah
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Andrew Davenport
- UCL Department of Renal Medicine, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Tung-Chun Lee
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| | - Bing Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
5
|
Rahmania FJ, Imae T, Chu JP. Electrochemical nonenzymatic glucose sensors catalyzed by Au nanoclusters on metallic nanotube arrays and polypyrrole nanowires. J Colloid Interface Sci 2024; 657:567-579. [PMID: 38071806 DOI: 10.1016/j.jcis.2023.11.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/02/2024]
Abstract
Monitoring blood glucose level is critical, since its abnormality leads to diabetes and causes death, even though glucose is essential for human living. Herein, the sensing study was performed on electrochemical nonenzymatic glucose sensors, which are composed of an Au nanocluster (AuNC) catalyst deposited on a metallic nanotube array (MeNTA) and polypyrrole nanowire (PPyNW). The AuNC was produced by irradiating a femtosecond pulse laser to the Au precursor solution, and it is a simple and facile method. The successful deposition of AuNC on both MeNTA and PPyNW was confirmed by means of the surface morphology and the Au content increase. On the exploration by cyclic voltammetry in alkaline condition, AuNC/MeNTA electrodes showed better performance than AuNC/PPyNW electrodes: The former was a remarkable electrocatalytic detector towards glucose oxidation with better sensitivity, lower detection limit, wider linear range, and longer-term stability without interference from potential interfering agents such as ascorbic acid, urea, NaCl, KCl, etc. Moreover, nonenzymatic AuNC/MeNTA electrodes exhibited high precision and accuracy in real human blood samples and, thus, can be a promising candidate in glucose sensing applications.
Collapse
Affiliation(s)
- Fitriani Jati Rahmania
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Toyoko Imae
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Jinn P Chu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
6
|
Zhang P, Zhu B, Du P, Travas-Sejdic J. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chem Rev 2024; 124:722-767. [PMID: 38157565 DOI: 10.1021/acs.chemrev.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Bioelectronic devices are designed to translate biological information into electrical signals and vice versa, thereby bridging the gap between the living biological world and electronic systems. Among different types of bioelectronics devices, wearable and implantable biosensors are particularly important as they offer access to the physiological and biochemical activities of tissues and organs, which is significant in diagnosing and researching various medical conditions. Organic conducting and semiconducting materials, including conducting polymers (CPs) and graphene and carbon nanotubes (CNTs), are some of the most promising candidates for wearable and implantable biosensors. Their unique electrical, electrochemical, and mechanical properties bring new possibilities to bioelectronics that could not be realized by utilizing metals- or silicon-based analogues. The use of organic- and carbon-based conductors in the development of wearable and implantable biosensors has emerged as a rapidly growing research field, with remarkable progress being made in recent years. The use of such materials addresses the issue of mismatched properties between biological tissues and electronic devices, as well as the improvement in the accuracy and fidelity of the transferred information. In this review, we highlight the most recent advances in this field and provide insights into organic and carbon-based (semi)conducting materials' properties and relate these to their applications in wearable/implantable biosensors. We also provide a perspective on the promising potential and exciting future developments of wearable/implantable biosensors.
Collapse
Affiliation(s)
- Peikai Zhang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Bicheng Zhu
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
7
|
Zambrano AC, Loiola LMD, Bukhamsin A, Gorecki R, Harrison G, Mani V, Fatayer S, Nunes SP, Salama KN. Porous Laser-Scribed Graphene Electrodes Modified with Zwitterionic Moieties: A Strategy for Antibiofouling and Low-Impedance Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4408-4419. [PMID: 38231564 PMCID: PMC10835659 DOI: 10.1021/acsami.3c15849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Laser-scribed graphene electrodes (LSGEs) are promising platforms for the development of electrochemical biosensors for point-of-care settings and continuous monitoring and wearable applications. However, the frequent occurrence of biofouling drastically reduces the sensitivity and selectivity of these devices, hampering their sensing performance. Herein, we describe a versatile, low-impedance, and robust antibiofouling interface based on sulfobetaine-zwitterionic moieties. The interface induces the formation of a hydration layer and exerts electrostatic repulsion, protecting the electrode surface from the nonspecific adsorption of various biofouling agents. We demonstrate through electrochemical and microscopy techniques that the modified electrode exhibits outstanding antifouling properties, preserving more than 90% of the original signal after 24 h of exposure to bovine serum albumin protein, HeLa cells, and Escherichia coli bacteria. The promising performance of this antifouling strategy suggests that it is a viable option for prolonging the lifetime of LSGEs-based sensors when operating on complex biological systems.
Collapse
Affiliation(s)
- Alanis C Zambrano
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Livia M D Loiola
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Abdullah Bukhamsin
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Radoslaw Gorecki
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - George Harrison
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Veerappan Mani
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Shadi Fatayer
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Applied Physics Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Suzana P Nunes
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Chemistry and Chemical Engineering Programs, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Khaled N Salama
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Fan Q, Li X, Dong H, Ni Z, Hu T. ZIF-67 Anchored on MoS 2/rGO Heterostructure for Non-Enzymatic and Visible-Light-Sensitive Photoelectrochemical Biosensing. BIOSENSORS 2024; 14:38. [PMID: 38248415 PMCID: PMC10813494 DOI: 10.3390/bios14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Graphene and graphene-like two-dimensional layered nanomaterials-based photoelectrochemical (PEC) biosensors have recently grown rapidly in popularity thanks to their advantages of high sensitivity and low background signal, which have attracted tremendous attention in ultrahigh sensitive small molecule detection. This work proposes a non-enzymatic and visible-light-sensitive PEC biosensing platform based on ZIF-67@MoS2/rGO composite which is synthesized through a facile and one-step microwave-assisted hydrothermal method. The combination of MoS2 and rGO could construct van der Waals heterostructures, which not only act as visible-light-active nanomaterials, but facilitate charge carriers transfer between the photoelectrode and glassy carbon electrode (GCE). ZIF-67 anchored on MoS2/rGO heterostructures provides large specific surface areas and a high proportion of catalytic sites, which cooperate with MoS2 nanosheets, realizing rapid and efficient enzyme-free electrocatalytic oxidation of glucose. The ZIF-67@MoS2/rGO-modified GCE can realize the rapid and sensitive detection of glucose at low detection voltage, which exhibits a high sensitivity of 12.62 μAmM-1cm-2. Finally, the ZIF-67@MoS2/rGO PEC biosensor is developed by integrating the ZIF-67@MoS2/rGO with a screen-printed electrode (SPE), which exhibits a high sensitivity of 3.479 μAmM-1cm-2 and a low detection limit of 1.39 μM. The biosensor's selectivity, stability, and repeatability are systematically investigated, and its practicability is evaluated by detecting clinical serum samples.
Collapse
Affiliation(s)
| | - Xiao Li
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; (Q.F.); (H.D.); (Z.N.)
| | | | | | - Tao Hu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China; (Q.F.); (H.D.); (Z.N.)
| |
Collapse
|
9
|
Zhang Z, Huang L, Chen Y, Qiu Z, Meng X, Li Y. Portable glucose sensing analysis based on laser-induced graphene composite electrode. RSC Adv 2024; 14:1034-1050. [PMID: 38174264 PMCID: PMC10759202 DOI: 10.1039/d3ra06947h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
In this work, a portable electrochemical glucose sensor was studied based on a laser-induced graphene (LIG) composite electrode. A flexible graphene electrode was prepared using LIG technology. Poly(3,4-ethylene dioxythiophene) (PEDOT) and gold nanoparticles (Au NPs) were deposited on the electrode surface by potentiostatic deposition to obtain a composite electrode with good conductivity and stability. Glucose oxidase (GOx) was then immobilized using glutaraldehyde (GA) to create an LIG/PEDOT/Au/GOx micro-sensing interface. The concentration of glucose solution is directly related to the current value by chronoamperometry. Results show that the sensor based on the LIG/PEDOT/Au/GOx flexible electrode can detect glucose solutions within a concentration range of 0.5 × 10-5 to 2.5 × 10-3 mol L-1. The modified LIG electrode provides the resulting glucose sensor with an excellent sensitivity of 341.67 μA mM-1 cm-2 and an ultra-low limit of detection (S/N = 3) of 0.2 × 10-5 mol L-1. The prepared sensor exhibits high sensitivity, stability, and selectivity, making it suitable for analyzing biological fluid samples. The composite electrode is user-friendly, and can be built into a portable biosensor device through smartphone detection. Thus, the developed sensor has the potential to be applied in point-of-care platforms such as environmental monitoring, public health, and food safety.
Collapse
Affiliation(s)
- Zhaokang Zhang
- College of Chemical Engineering, Fuzhou University Fuzhou 350108 China
| | - Lu Huang
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Yiting Chen
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Zhenli Qiu
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Xiangying Meng
- School of Medical Laboratory, Weifang Medical University Weifang 261053 China
| | - Yanxia Li
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| |
Collapse
|
10
|
Lorestani F, Zhang X, Abdullah AM, Xin X, Liu Y, Rahman M, Biswas MAS, Li B, Dutta A, Niu Z, Das S, Barai S, Wang K, Cheng H. A highly sensitive and long-term stable wearable patch for continuous analysis of biomarkers in sweat. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2306117. [PMID: 38525448 PMCID: PMC10959519 DOI: 10.1002/adfm.202306117] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Indexed: 03/26/2024]
Abstract
Although increasing efforts have been devoted to the development of non-invasive wearable or stretchable electrochemical sweat sensors for monitoring physiological and metabolic information, most of them still suffer from poor stability and specificity over time and fluctuating temperatures. This study reports the design and fabrication of a long-term stable and highly sensitive flexible electrochemical sensor based on nanocomposite-modified porous graphene by simple and facile laser treatment for detecting biomarkers such as glucose in sweat. The laser-reduced and patterned stable conductive nanocomposite on the porous graphene electrode provides the resulting glucose sensor with an excellent sensitivity of 1317.69 μAmM-1cm-2 with an ultra-low limit of detection (LOD) of 0.079 μM. The sensor can also detect pH and exhibit extraordinary stability to maintain more than 91% sensitivity over 21 days in ambient conditions. Taken together with a temperature sensor based on the same material system, the dual glucose and pH sensor integrated with a flexible microfluidic sweat sampling network further results in accurate continuous on-body glucose detection calibrated by the simultaneously measured pH and temperature. The low-cost, highly sensitive, and long-term stable platform could facilitate and pave the way for the early identification and continuous monitoring of different biomarkers for non-invasive disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Farnaz Lorestani
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Xianzhe Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Abu Musa Abdullah
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Xin Xin
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Yushen Liu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Mashfiqur Rahman
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Md Abu Sayeed Biswas
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Bowen Li
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Ankan Dutta
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhenyuan Niu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Shuvendu Das
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Shishir Barai
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| | - Ke Wang
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA,16802, USA
| |
Collapse
|
11
|
Fan L, Wu R, Patel V, Huang JJ, Selvaganapathy PR. Solid-state, reagent-free and one-step laser-induced synthesis of graphene-supported metal nanocomposites from metal leaves and application to glucose sensing. Anal Chim Acta 2023; 1264:341248. [PMID: 37230727 DOI: 10.1016/j.aca.2023.341248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
The laser-induced method to prepare three-dimensional (3D) porous graphene has been widely used in many fields owing to its low-cost, easy operation, maskless patterning and ease of mass production. Metal nanoparticles are further introduced on the surface of 3D graphene to enhance its property. The existing methods, however, such as laser irradiation and electrodeposition of metal precursor solution, suffer from many shortcomings, including complicated procedure of metal precursor solution preparation, strict experimental control, and poor adhesion of metal nanoparticles. Herein, a solid-state, reagent-free, and one-step laser-induced strategy has been developed for the fabrication of metal nanoparticle modified-3D porous graphene nanocomposites. Commercial transfer metal leaves were covered on a polyimide film followed by direct laser irradiation to produce 3D graphene nanocomposites modified with metal nanoparticles. The proposed method is versatile and applicable to incorporate various metal nanoparticles including gold silver, platinum, palladium, and copper. Furthermore, the 3D graphene nanocomposites modified with AuAg alloy nanoparticles were successfully synthesized in both 21 Karat (K) and 18K gold leaves. Its electrochemical characterization demonstrated that the synthesized 3D graphene-AuAg alloy nanocomposites exhibited excellent electrocatalytic properties. Finally, we fabricated LIG-AuAg alloy nanocomposites as enzyme-free flexible sensors for glucose detection. The LIG-18K electrodes exhibited the superior glucose sensitivity of 1194 μA mM-1 cm-2 and low detection limits of 0.21 μM. The LIG-21K nanocomposite sensors showed two linear ranges from 1 μM to 1 mM and 2 mM-20 mM with good sensitivity. Furthermore, the flexible glucose sensor showed good stability, sensitivity, and ability to sense in blood plasma samples. The proposed one-step fabrication of reagent-free and metal alloy nanoparticles on LIG with excellent electrochemical performance opens up possibilities for diversifying potential applications of sensing, water treatment and electrocatalysis.
Collapse
Affiliation(s)
- Liang Fan
- College of Environmental Science and Engineering, Sino-Canada R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300350, China; Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Rong Wu
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Vinay Patel
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering, Sino-Canada R&D Centre on Water and Environmental Safety, Nankai University, Tianjin, 300350, China.
| | - P Ravi Selvaganapathy
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
12
|
Perk B, Büyüksünetçi YT, Anık Ü. Gold nanoparticle deposited electrochemical sensor for hyaluronic acid detection. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
13
|
Gao N, Zhou R, Tu B, Tao T, Song Y, Cai Z, He H, Chang G, Wu Y, He Y. Graphene electrochemical transistor incorporated with gel electrolyte for wearable and non-invasive glucose monitoring. Anal Chim Acta 2023; 1239:340719. [PMID: 36628721 DOI: 10.1016/j.aca.2022.340719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
With the rapid development of wearable electronic devices, health monitoring is undergoing a fundamental shift from hospital-centered treatment to patient-centered diagnosis. Solution-gated graphene transistors provide an effective platform for developing high-sensitivity wearable devices due to their unique signal amplification, low energy consumption, and compatibility for miniaturization. However, it is still a major challenge to perform real-time sweat composition monitoring directly on the dry skin surface. In this work, a skin-based flexible gel electrolyte graphene transistor (GEGT) was successfully designed and fabricated for glucose detection, consisting of a gate electrode decorated with Au nanoparticles modified reduced graphene oxide (AuNPs/RGO) nanocomposites and a monolayer graphene channel. Glycerin gel was used to replace the traditional liquid electrolyte, not only could better fit the human skin, but also play the role of fluid collection, providing stable testing conditions for the sensor. Based on the high electron mobility of graphene channel and the excellent electrocatalytic performance of AuNPs/RGO nanocomposites, the constructed GEGT sensor exhibits excellent sensing performance for glucose with good selectivity, low operating voltage (0.5 V), wide detection range (10 nM - 25 mM), and low detection limit (10 nM). The device maintains stable performance after up to 1000 bending cycles with a bending radius of 4 mm. In addition, the GEGT sensor displays good accuracy in sweat detection and sensitive dynamic response during actual wearing, which provides a guarantee for the construction of wearable transistor devices and real-time health tracking.
Collapse
Affiliation(s)
- Nan Gao
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China
| | - Rui Zhou
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China
| | - Bo Tu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China
| | - Tian Tao
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China
| | - Yongqiao Song
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China
| | - Zhiwei Cai
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China
| | - Hanping He
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan, 430062, China
| | - Gang Chang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China.
| | - Yuxiang Wu
- School of Physical Education, Jianghan University, Wuhan, 430056, China.
| | - Yunbin He
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, No.368 Youyi Avenue, Wuchang, Wuhan, 430062, China.
| |
Collapse
|
14
|
Printing parameters affect the electrochemical performance of 3D-printed carbon electrodes obtained by fused deposition modeling. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Direct decoration of carbon nanohorns with binary nickel-cobalt sulfide nanosheets towards non-enzymatic glucose sensing in human fluids. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
LI G, WANG B, ZHAO L, SHI X, WU G, CHEN W, SUN L, LIANG J, ZHOU Z. Label-free detection of glypican-3 using reduced graphene oxide /polyetherimide/gold nanoparticles enhanced aptamer specific sensing interface on light-addressable potentiometric sensor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Yan W, Hu H, Wang L, Ho D. Dual Defocused Laser Pyrolysis: A Lasing-Centric Strategy for Defect and Morphological Optimization in Microsupercapacitor Electrodes. SMALL METHODS 2022; 6:e2101616. [PMID: 35460210 DOI: 10.1002/smtd.202101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Laser-induced graphene (LIG) has shown great potential for controllable and scalable realization of microsupercapacitors (MSCs). However, as is well-known, LIG electrodes suffer from low charge storage capacity and conductance. In this paper, a lasing-centric method is presented for defect control and morphological enhancement in LIG electrodes through unique dual laser pyrolysis. This method encompasses dual lasing pyrolysis, one for the synthesis of defocused LIG, and another for the decoration of Ru nanoparticles to enhance electrochemical performance. Fundamentally, the investigation simultaneously optimizes for defocused lasing distance and lasing speed, which to the best of the author's knowledge, has not been previously reported. The defocused LIG electrode exhibits a remarkably improved electrochemical capacitance of over 25 times (114 mF cm-2 ) compared to the one based on focused laser-induced graphene (FLIG). As a device demonstration, a flexible and self-healable MSC has been fabricated based on DFLIG/Ru-PEDOT/Au electrodes, exhibiting a high areal specific capacitance (25.7 mF cm-2 ), excellent electrochemical stability (91% retention of specific capacitance after 8000 cycles), and good self-healing performance (85.6% retention of specific capacitance after two cut-heal cycles). By enhancing material properties via dual defocused laser pyrolysis, this work presents a strategy for highly controllable and scalable realization of electrodes in micro-energy storage devices.
Collapse
Affiliation(s)
- Wenrong Yan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, Guangdong, 518055, China
| | - Haibo Hu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Lei Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, Guangdong, 518055, China
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
18
|
Matias TA, Rocha RG, Faria LV, Richter EM, Munoz RAA. Infrared laser‐induced graphene sensor for tyrosine detection. ChemElectroChem 2022. [DOI: 10.1002/celc.202200339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tiago A. Matias
- Federal University of Uberlandia: Universidade Federal de Uberlandia Institute of Chemistry BRAZIL
| | - Raquel G. Rocha
- Federal University of Uberlandia: Universidade Federal de Uberlandia Institute of Chemistry BRAZIL
| | - Lucas V. Faria
- Federal University of Uberlandia: Universidade Federal de Uberlandia Institute of Chemistry BRAZIL
| | - Eduardo M. Richter
- Federal University of Uberlandia: Universidade Federal de Uberlandia Institute of Chemistry BRAZIL
| | - Rodrigo A. A. Munoz
- Federal University of Uberlandia Institute of Chemistry Av. Joao Naves de Avila 2121 - Bloco 1D 38408186 Uberlandia BRAZIL
| |
Collapse
|
19
|
Beduk D, Ilton de Oliveira Filho J, Beduk T, Harmanci D, Zihnioglu F, Cicek C, Sertoz R, Arda B, Goksel T, Turhan K, Salama KN, Timur S. 'All In One' SARS-CoV-2 variant recognition platform: Machine learning-enabled point of care diagnostics. BIOSENSORS & BIOELECTRONICS: X 2022; 10:100105. [PMID: 35036904 PMCID: PMC8743487 DOI: 10.1016/j.biosx.2022.100105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 04/29/2023]
Abstract
Point of care (PoC) devices are highly demanding to control current pandemic, originated from severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Though nucleic acid-based methods such as RT-PCR are widely available, they require sample preparation and long processing time. PoC diagnostic devices provide relatively faster and stable results. However they require further investigation to provide high accuracy and be adaptable for the new variants. In this study, laser-scribed graphene (LSG) sensors are coupled with gold nanoparticles (AuNPs) as stable promising biosensing platforms. Angiotensin Converting Enzyme 2 (ACE2), an enzymatic receptor, is chosen to be the biorecognition unit due to its high binding affinity towards spike proteins as a key-lock model. The sensor was integrated to a homemade and portable potentistat device, wirelessly connected to a smartphone having a customized application for easy operation. LODs of 5.14 and 2.09 ng/mL was achieved for S1 and S2 protein in the linear range of 1.0-200 ng/mL, respectively. Clinical study has been conducted with nasopharyngeal swabs from 63 patients having alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2) variants, patients without mutation and negative patients. A machine learning model was developed with accuracy of 99.37% for the identification of the SARS-Cov-2 variants under 1 min. With the increasing need for rapid and improved disease diagnosis and monitoring, the PoC platform proved its potential for real time monitoring by providing accurate and fast variant identification without any expertise and pre sample preparation, which is exactly what societies need in this time of pandemic.
Collapse
Affiliation(s)
- Duygu Beduk
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100, Bornova, Izmir, Turkey
| | - José Ilton de Oliveira Filho
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tutku Beduk
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Duygu Harmanci
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100, Bornova, Izmir, Turkey
| | - Figen Zihnioglu
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Candan Cicek
- Department of Medical Microbiology, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
| | - Ruchan Sertoz
- Department of Medical Microbiology, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
| | - Bilgin Arda
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
| | - Tuncay Goksel
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
- EGESAM-Ege University Translational Pulmonary Research Center, 35100, Bornova, Izmir, Turkey
| | - Kutsal Turhan
- Department of Thoracic Surgery, Faculty of Medicine Ege University, 35100, Bornova, Izmir, Turkey
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Suna Timur
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100, Bornova, Izmir, Turkey
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
20
|
Affordable equipment to fabricate laser-induced graphene electrodes for portable electrochemical sensing. Mikrochim Acta 2022; 189:185. [PMID: 35396635 DOI: 10.1007/s00604-022-05294-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Graphene-based materials present unique properties for electrochemical applications, and laser-induced conversion of polyimide to graphene is an emerging route to obtain a high-quality material for sensing. Herein we present compact and low-cost equipment constructed from an open-source 3D printer at which a 3.5-W visible (449 nm) laser was adapted to fabricate laser-induced graphene (LIG) electrodes from commercial polyimide, which resulted in electron transfer kinetic (k0) of 5.6 × 10-3 cm s-1 and reproducibility calculated by relative standard deviation (RSD < 5%) from cyclic voltammograms of [Fe(CN)6]3-/4- using 5 different electrodes. LIG electrodes enabled the simultaneous voltammetric determination of uric acid (+ 0.1 V vs. pseudo-reference) and nitrite (+ 0.4 V vs pseudo-reference), with limit of detection (LOD) values of 0.07 and 0.27 µmol L-1, respectively. Amperometric measurements for the detection of H2O2 (applying + 0.0 V vs. Ag|AgCl|KCl(sat.)) after Prussian blue (PB) modification and ciprofloxacin (applying + 1.2 V vs. Ag|AgCl|KCl(sat.)) were performed under flow conditions, which confirmed the high stability of LIG and LIG-PB surfaces. The LOD values were 1.0 and 0.2 µmol L-1 for H2O2 and ciprofloxacin, respectively. The RSD values (< 12%) obtained for the analysis using three different electrodes attested the precision of LIG electrodes manufactured in two designs. No sample matrix effects on the determination of ciprofloxacin in milk samples were observed (recoveries between 84 and 96%). The equipment can be built with less than $300 and each LIG electrode costs less than $0.01.
Collapse
|
21
|
Franco FF, Hogg RA, Manjakkal L. Cu 2O-Based Electrochemical Biosensor for Non-Invasive and Portable Glucose Detection. BIOSENSORS 2022; 12:174. [PMID: 35323444 PMCID: PMC8946795 DOI: 10.3390/bios12030174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 05/14/2023]
Abstract
Electrochemical voltammetric sensors are some of the most promising types of sensors for monitoring various physiological analytes due to their implementation as non-invasive and portable devices. Advantages in reduced analysis time, cost-effectiveness, selective sensing, and simple techniques with low-powered circuits distinguish voltammetric sensors from other methods. In this work, we developed a Cu2O-based non-enzymatic portable glucose sensor on a graphene paste printed on cellulose cloth. The electron transfer of Cu2O in a NaOH alkaline medium and sweat equivalent solution at very low potential (+0.35 V) enable its implementation as a low-powered portable glucose sensor. The redox mechanism of the electrodes with the analyte solution was confirmed through cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy studies. The developed biocompatible, disposable, and reproducible sensors showed sensing performance in the range of 0.1 to 1 mM glucose, with a sensitivity of 1082.5 ± 4.7% µA mM-1 cm-2 on Cu2O coated glassy carbon electrode and 182.9 ± 8.83% µA mM-1 cm-2 on Cu2O coated graphene printed electrodes, making them a strong candidate for future portable, non-invasive glucose monitoring devices on biodegradable substrates. For portable applications we demonstrated the sensor on artificial sweat in 0.1 M NaOH solution, indicating the Cu2O nanocluster is selective to glucose from 0.0 to +0.6 V even in the presence of common interference such as urea and NaCl.
Collapse
Affiliation(s)
- Fabiane Fantinelli Franco
- Water and Environment Group, Infrastructure and Environment Division, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK;
| | - Richard A. Hogg
- Electronic and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK;
| | - Libu Manjakkal
- Electronic and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK;
| |
Collapse
|
22
|
Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Liu J, Zhu B, Dong H, Zhang Y, Xu M, Travas-Sejdic J, Chang Z. A novel electrochemical insulin aptasensor: From glassy carbon electrodes to disposable, single-use laser-scribed graphene electrodes. Bioelectrochemistry 2022; 143:107995. [PMID: 34794112 DOI: 10.1016/j.bioelechem.2021.107995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022]
Abstract
Insulin, a peptide hormone secreted by pancreatic β cells, affects the development of diabetes and associated complications. Herein, we propose an electrochemical aptasensor for sensitive and selective detection of insulin using laser-scribed graphene electrodes (LSGEs). Before using disposable LSGEs, the development and proof-of-concept sensing experiments were firstly carried out on research-grade glassy carbon electrode (GCE). The aptasensor is based on using Exonuclease I (Exo I) that catalyses the hydrolysis of single-stranded aptamers attached to the electrode surface; however, the hydrolysis does not occur if the insulin is bound to the aptamer. Therefore, the unbound aptamers are cleaved by Exo I while insulin-bound aptamers remain on the electrode surface. In the next step, the gold nanoparticle - aptamer (AuNPs-Apt) probes are introduced to the electrode surface to form a 'sandwich' structure with the insulin on the surface-attached aptamer. The redox probe, methylene blue (MB), intercalates into the aptamers' guanine bases and the sandwich structure of AuNPs-Apt/insulin/surface-bound aptamer amplifies electrochemical signal from MBs. The signal can be well-correlated to the concentrations of insulin. A limit of detection of 22.7 fM was found for the LSGE-based sensors and 9.8 fM for GCE-based sensors used for comparison and initial sensor development. The results demonstrate successful fabrication of the single-use and sensitive LSGEs-based sensors for insulin detection.
Collapse
Affiliation(s)
- Jinjin Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bicheng Zhu
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Private Bag, 92019 Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Private Bag, 92019 Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - Zhu Chang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China.
| |
Collapse
|
24
|
Balkourani G, Damartzis T, Brouzgou A, Tsiakaras P. Cost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:355. [PMID: 35009895 PMCID: PMC8749877 DOI: 10.3390/s22010355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023]
Abstract
The high conductivity of graphene material (or its derivatives) and its very large surface area enhance the direct electron transfer, improving non-enzymatic electrochemical sensors sensitivity and its other characteristics. The offered large pores facilitate analyte transport enabling glucose detection even at very low concentration values. In the current review paper we classified the enzymeless graphene-based glucose electrocatalysts' synthesis methods that have been followed into the last few years into four main categories: (i) direct growth of graphene (or oxides) on metallic substrates, (ii) in-situ growth of metallic nanoparticles into graphene (or oxides) matrix, (iii) laser-induced graphene electrodes and (iv) polymer functionalized graphene (or oxides) electrodes. The increment of the specific surface area and the high degree reduction of the electrode internal resistance were recognized as their common targets. Analyzing glucose electrooxidation mechanism over Cu- Co- and Ni-(oxide)/graphene (or derivative) electrocatalysts, we deduced that glucose electrochemical sensing properties, such as sensitivity, detection limit and linear detection limit, totally depend on the route of the mass and charge transport between metal(II)/metal(III); and so both (specific area and internal resistance) should have the optimum values.
Collapse
Affiliation(s)
- Georgia Balkourani
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece;
| | - Theodoros Damartzis
- Industrial Processes and Energy Systems Engineering, Institute of Mechanical Engineering, Sion, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Angeliki Brouzgou
- Department of Energy Systems, School of Technology, University of Thessaly, Geopolis, Regional Road Trikala-Larisa, 41500 Larisa, Greece
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece;
- Laboratory of Materials and Devices for Electrochemical Power Engineering, Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia
- Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry (RAS), 620990 Yekaterinburg, Russia
| |
Collapse
|
25
|
Zhu J, Liu S, Hu Z, Zhang X, Yi N, Tang K, Dexheimer MG, Lian X, Wang Q, Yang J, Gray J, Cheng H. Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosens Bioelectron 2021; 193:113606. [PMID: 34507206 PMCID: PMC8556579 DOI: 10.1016/j.bios.2021.113606] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Non-enzymatic glucose sensors outperform enzymatic ones in terms of cost, sensitivity, stability, and operating duration. Though highly sensitive, it is still desirable to further improve the sensitivity of non-enzymatic glucose sensors to detect a trace amount of glucose in sweat and other biofluids. Among the demonstrated effective approaches using bimetals or 3D porous structures, the porous laser-induced graphene (LIG) on flexible polymers showcases good conductivity and a simple fabrication process for the integration of sensing materials. The uniform electroless plating of the nickel and gold layer on LIG electrodes demonstrates significantly enhanced sensitivity and a large linear range for glucose sensing. The sensor with the porous LIG foam exhibits a high sensitivity of 1080 μA mM-1 cm-2, whereas a further increased sensitivity of 3500 μA mM-1 cm-2 is obtained with LIG fibers (LIGF). Impressively, a large linear range (0-30 mM) can be achieved by changing the bias voltage from 0.5 to 0.1 V due to the Au coating. Because the existing non-enzymatic glucose sensors are limited to use in basic solutions, their application in wearable electronics is elusive. In addition to the reduced requirement for the basic solution, this work integrates a porous encapsulating reaction cavity containing alkali solutions with a soft, skin-interfaced microfluidic component to provide integrated microfluidic non-enzymatic glucose sensors for sweat sampling and glucose sensing. The accurate glucose measurements from the human sweat and cell culture media showcase the practical utility, which opens up opportunities for the non-enzymatic glucose sensors in wearable electronics.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Shangbin Liu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhihui Hu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA; School of Logistics Engineering, Wuhan University of Technology, Wuhan, 430063, China
| | - Xianzhe Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ning Yi
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kairui Tang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Michael Gregory Dexheimer
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiaojun Lian
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Qing Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jennifer Gray
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
26
|
Wang G, Chen J, Huang L, Chen Y, Li Y. A laser-induced graphene electrochemical immunosensor for label-free CEA monitoring in serum. Analyst 2021; 146:6631-6642. [PMID: 34591043 DOI: 10.1039/d1an01011e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cost-effective construction of self-designed conductive graphene patterns is crucial to the fabrication of graphene-based electrochemical devices. Here, a label-free carcinoembryonic antigen (CEA) electrochemical immunosensor is developed based on the surface engineering of a laser-induced graphene (LIG)/Au electrode. The LIG electrode was produced with a smart and inexpensive 450 nm semiconductor laser through three electrode patterns under ambient conditions. Then the LIG/Au electrode was organized by conformal anchoring of Au nanoparticles (NPs) on the LIG work area using chloroauric acid as the precursor. Good electrochemical activity with improved conductivity of the LIG/Au electrode was obtained under optimized conditions of laser intensity, carving depth, and chlorogenic acid dosage, to name a few. The LIG/Au electrode was carbonylated based on Au-S∼COOH using 11-mercaptoundecanoic acid (MUA). The antibody was covalently bound on the work area to form a label-free immunosensor. The constructed immunosensor shows high sensitivity with a good response in the range of low concentrations from 0.01 to 100 ng mL-1, low detection limit (5.0 pg mL-1), high selectivity compared with some possible interference, and can be applied in a bovine serum solution without the need of sample labeling and pretreatment. Moreover, the immunosensor is mechanically flexible with minimal change in signal output after bending at different angles. It shows an easy and green electrode preparation method that combines 3D porous structures of graphene, uniform immobilization of Au NPs, binder-free, easy covalent binding of an antibody, and good mechanical properties. Hence, the present method has great potential for applications involving electrochemical biosensors.
Collapse
Affiliation(s)
- Guangyuan Wang
- Department of Chemical Engineering, College of Materials and Chemical Engineening, Minjiang University, Fuzhou, 350108, China. .,College of Environment and Resource, Fuzhou University, Fuzhou, 350108, China
| | - Jiayi Chen
- Department of Chemical Engineering, College of Materials and Chemical Engineening, Minjiang University, Fuzhou, 350108, China.
| | - Lu Huang
- Department of Chemical Engineering, College of Materials and Chemical Engineening, Minjiang University, Fuzhou, 350108, China.
| | - Yiting Chen
- Department of Chemical Engineering, College of Materials and Chemical Engineening, Minjiang University, Fuzhou, 350108, China.
| | - Yanxia Li
- Department of Chemical Engineering, College of Materials and Chemical Engineening, Minjiang University, Fuzhou, 350108, China. .,Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, 350108, China
| |
Collapse
|
27
|
Muzyka K, Xu G. Laser‐induced Graphene in Facts, Numbers, and Notes in View of Electroanalytical Applications: A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kateryna Muzyka
- Laboratory of Analytical Optochemotronics Department of Biomedical Engineering Kharkiv National University of RadioElectronics Kharkiv 61166 Ukraine
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun Jilin 130022 PR China
| |
Collapse
|
28
|
Liu X, Song N, Qian D, Gu S, Pu J, Huang L, Liu J, Qian K. Porous Inorganic Materials for Bioanalysis and Diagnostic Applications. ACS Biomater Sci Eng 2021; 8:4092-4109. [PMID: 34494831 DOI: 10.1021/acsbiomaterials.1c00733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porous inorganic materials play an important role in adsorbing targeted analytes and supporting efficient reactions in analytical science. The detection performance relies on the structural properties of porous materials, considering the tunable pore size, shape, connectivity, etc. Herein, we first clarify the enhancement mechanisms of porous materials for bioanalysis, concerning the detection sensitivity and selectivity. The diagnostic applications of porous material-assisted platforms by coupling with various analytical techniques, including electrochemical sensing, optical spectrometry, and mass spectrometry, etc., are then reviewed. We foresee that advanced porous materials will bring far-reaching implications in bioanalysis toward real-case applications, especially as diagnostic assays in clinical settings.
Collapse
Affiliation(s)
- Xun Liu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Naikun Song
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dahong Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Sai Gu
- School of Engineering, University of Warwick, Coventry CV4 7AL, W Midlands, England.,Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom
| | - Jun Pu
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Jian Liu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom.,Chinese Academy of Sciences, Dalian Institute of Chemical Physics, CAS State Key Laboratory of Catalysis, 568 Zhongshan Road, Dalian 116023, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.,Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| |
Collapse
|
29
|
Chang Z, Zhu B, Liu J, Zhu X, Xu M, Travas-Sejdic J. Electrochemical aptasensor for 17β-estradiol using disposable laser scribed graphene electrodes. Biosens Bioelectron 2021; 185:113247. [PMID: 33962157 DOI: 10.1016/j.bios.2021.113247] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
17β-Estradiol (E2), the strongest of the three major physiological estrogens in females, is an important factor in the female reproductive system. The abnormal level of E2 causes health issues, such as weak bones, urinary tract infections and even depression. Here, we present a novel, sensitive and selective, electrochemical aptasensor for detection of 17β-estradiol (E2). The E2 recognition aptamer was split into two fragments: the first fragment, functionalised with adamantane, is attached to poly(β-cyclodextrin) (poly(β-CD))-modified electrode surface through host-guest interactions between the adamantane and poly(β-CD). The second fragment, labelled with gold nanoparticles, forms the stem-loop structure with the first fragment only in the presence of E2. That specific recognition process triggers the change in the electrochemical signal (a change in the peak current from reduction of AuNPs), recorded by means of differential pulse voltammetry (DPV). The feasibility of the sensing design was firstly investigated on the commercially available glass carbon electrodes (GCE), with achieved a linear detection range of 1.0 × 10-13 to 1.0 × 10-8 M and a limit of detection (LoD) 0.7 fM. The sensing methodology was then translated onto single-use, disposable, laser-scribed graphene electrodes (LSGE) on a plastic substrate. The dynamic sensing range of E2 on LSGE was found to be 1.0 × 10-13 to 1.0 × 10-9 M, with a LoD of 63.1 fM, comparable to these of GCE. The successful translation of the developed E2 aptasensor from GCE to low-cost, disposable LSGE highlights a potential of this sensing platform in commercial, portable sensing detection systems for E2 and similar targets of biological interest.
Collapse
Affiliation(s)
- Zhu Chang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Bicheng Zhu
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - JinJin Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Xu Zhu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
30
|
Peng S, Lai T, Kong Y, Ran Y, Su L, Ma D, Xiao X, Wang Y. A novel non-enzymatic glucose electrochemical sensor with high sensitivity and selectivity based on CdIn 2O 4nanoparticles on 3D Ni foam substrate. NANOTECHNOLOGY 2021; 32:405502. [PMID: 34186527 DOI: 10.1088/1361-6528/ac0fa2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Due to the poor conductivity of Fe based, Cu based and Co based electrode materials commonly used in the electrochemical detection of glucose, and the uneven stirring and poor conductivity of the traditional preparation method based on glassy carbon electrode. In order to solve the above problems, in this work, CdIn2O4with high electrical conductivity was directly grown on three-dimensional (3D) Ni foam to prepare electrode materials for non-enzymatic glucose sensors. CdIn2O4nanoparticles is prepared from cadmium acetate and indium nitrate hydrate in benzyl alcohol by non-aqueous sol-gel method. The electrocatalytic oxidation performances of CdIn2O4electrode material for non-enzymatic glucose are studied. The results show that the proposed CdIn2O4electrode material has good electrochemical properties and sensing performance for glucose detection. The electrochemical response of CdIn2O4electrode material to glucose is recorded that calibration plot for glucose concentrations ranging from 1.0μM to 1.0 mM (R2 = 0.99), a limit detection of 0.08μM, an excellent sensitivity of 3.2925 mA.mM-1.cm-2, a rapid response time of 1.58 s, a good selectivity and a good long-term stability. These demonstrate the significant potential of CdIn2O4electrode material based on 3D Ni foam as non-enzymatic glucose sensors, which makes it possible to use it as a practical glucose detector. This work could introduce a new concept of nanoparticles modified electrode material grown directly on 3D Ni foam, thus a simple and reliable electrochemical glucose sensor platform is realized. This study was completed in 2019 in the school of materials and energy, Yunnan University.
Collapse
Affiliation(s)
- Sijia Peng
- School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Tingrun Lai
- School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Yulin Kong
- School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Yan Ran
- School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Linfeng Su
- School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Dian Ma
- School of Materials and Energy, Yunnan University, 650504 Kunming, People's Republic of China
| | - Xuechun Xiao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan University, 650091 Kunming, People's Republic of China
| | - Yude Wang
- Key Lab of Quantum Information of Yunnan Province, Yunnan University, 650091 Kunming, People's Republic of China
| |
Collapse
|
31
|
Lipińska W, Grochowska K, Siuzdak K. Enzyme Immobilization on Gold Nanoparticles for Electrochemical Glucose Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1156. [PMID: 33925155 PMCID: PMC8146701 DOI: 10.3390/nano11051156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
More than 50 years have passed since Clark and Lyon developed the concept of glucose biosensors. Extensive research about biosensors has been carried out up to this day, and an exponential trend in this topic can be observed. The scope of this review is to present various enzyme immobilization methods on gold nanoparticles used for glucose sensing over the past five years. This work covers covalent bonding, adsorption, cross-linking, entrapment, and self-assembled monolayer methods. The experimental approach of each modification as well as further results are described. Designated values of sensitivity, the limit of detection, and linear range are used for the comparison of immobilization techniques.
Collapse
Affiliation(s)
| | | | - Katarzyna Siuzdak
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland; (W.L.); (K.G.)
| |
Collapse
|