1
|
Mourdikoudis S, Dutta S, Kamal S, Gómez-Graña S, Pastoriza-Santos I, Wuttke S, Polavarapu L. State-of-the-Art, Insights, and Perspectives for MOFs-Nanocomposites and MOF-Derived (Nano)Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415399. [PMID: 40255059 DOI: 10.1002/adma.202415399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/21/2025] [Indexed: 04/22/2025]
Abstract
Composite structures created from metal‒organic framework (MOF) matrices are reviewed in this work. Depending on the nature of the second component apart from the MOF platform, several synergistic properties may arise; at the same time, the initial features of the single constituent materials are usually maintained, and individual shortcomings are mitigated. Currently, timely energy and environmental challenges necessitate the quest for more advanced materials and technologies. Significant developments in MOF-nanocomposites have enabled their application across a wide range of modern and traditional fields. This review demonstrates in an exhaustive and critical way a broad range of MOF-based nanocomposites, namely, MOF/perovskite nanoparticles (NPs), MOF/metal (non-iron) oxide NPs, MOF/Fe3O4 NPs, MOF/metal chalcogenide NPs, MOF/metal NPs, and MOF/carbon-based materials, as well as nanocomposites of MOFs with other semiconductor NPs. Key points related to the synthesis, characterization, and applications of these materials are provided. Depending on their configuration, the composites under discussion can be applied in domains such as photoelectrochemical sensing, antibiotic/dye degradation, optoelectronics, photovoltaics, catalysis, solar cells, supercapacitors, batteries, water remediation, and drug loading. Sometimes, MOFs can undergo certain processes (e.g. pyrolysis) and act as precursors for composite materials with appealing characteristics. Therefore, a special section in the manuscript is devoted to MOF-derived NP composites. Toward the end of the text, we conclude while also describing the challenges and possibilities for further investigations in the umbrella of material categories analyzed herein. Despite the progress achieved, key questions remain to be answered regarding the relationships among the morphology, properties, and polyvalent activity of these materials. The present work aims to shed light on most of their aspects and innovative prospects, facilitating a deeper comprehension of the underlying phenomena, functionality, and mechanistic insights governing their behavior.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
| | - Subhajit Dutta
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48950, Spain
| | - Saqib Kamal
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
- Department of Chemistry, Emerson University Multan (EUM), Multan, 60000, Pakistan
| | - Sergio Gómez-Graña
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48950, Spain
- Academic Centre for Materials and Nanotechnology, A. Mickiewicza 30, Krakow, 30-059, Poland
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, Vigo, 36310, Spain
| |
Collapse
|
2
|
Mubarak S, Dhamodharan D, Ghoderao PN, Byun HS. A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Ahuja V, Bhatt AK, Varjani S, Choi KY, Kim SH, Yang YH, Bhatia SK. Quantum dot synthesis from waste biomass and its applications in energy and bioremediation. CHEMOSPHERE 2022; 293:133564. [PMID: 35007612 DOI: 10.1016/j.chemosphere.2022.133564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Quantum dots (QDs) are getting special attention due to their commendable optical properties and applications. Conventional metal-based QDs have toxicity and non-biodegradability issues, thus it becomes necessary to search for renewable precursor molecules for QDs synthesis. In recent years, biomass-based carbon rich QDs (CQDs) have been introduced which are mainly synthesised via carbonization (pyrolysis and hydrothermal treatment). These CQDs offered higher photostability, biocompatibility, low-toxicity, and easy tunability for physicochemical properties. Exceptional optical properties become a point of attraction for its multifaceted applications in various sectors like fabrication of electrodes and solar cells, conversion of solar energy to electricity, detection of pollutants, designing biosensors, etc. In recent years, a lot of work has been done in this field. This article will summarize these advancements along in a special context to biomass-based QDs and their applications in energy and the environment.
Collapse
Affiliation(s)
- Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171005, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171005, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul, 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul, 05029, Republic of Korea.
| |
Collapse
|