1
|
Shi H, Wang C, Wang J, Wang D, Xiong Z, Wang Z, Wang Z, Bai Z, Gao Y, Yan X. Design of dual carbon encapsulated porous micron silicon composite with compact surface for enhanced reaction kinetics of lithium-ion battery anodes. J Colloid Interface Sci 2024; 668:459-470. [PMID: 38691956 DOI: 10.1016/j.jcis.2024.04.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Developing high-performance composites with fast charging and superior cycle life is paramount for lithium-ion batteries (LIBs). Herein, we synthesized a double-shell carbon-coated porous structure composite with a compact surface (P-Si@rGO@C) using low-cost commercial micron-sized silicon (Si) instead of nanoscale silicon. Results reveal that the unique P-Si@rGO@C features high adaptability to volume expansion, accelerates electron/ion transmission rate, and forms a stable solid electrolyte interphase (SEI) film. This phenomenon arises from the synergistic effect of abundant internal voids and an external double-layer carbon shell with a dense surface. Specifically, the P-Si@rGO@C anode exhibits a high initial coulombic efficiency (ICE) (88.0 %), impressive rate-capability (612.1 mAh/g at 2C), and exceptional long-term cyclability (972.2 mAh/g over 500 cycles at 0.5C). Further kinetic studies elucidate the diffusion-capacitance hybrid energy storage mechanism and reveal an improved Li+ diffusion coefficient (from 3.47 × 10-11 to 2.85 × 10-9 cm2 s-1). Ex-situ characterization confirms the crystal phase change of micron-sized Si and the formation of a stable LiF-rich SEI. Theoretical calculations support these findings by demonstrating an enhancement in the adsorption ability of Si to Li+ (from -0.89 to -0.97 eV) and a reduction in the energy migration barrier (from 0.35 to 0.18 eV). Additionally, practical LixSi powder is shown to increase the ICE of full cells from 67.4 % to 87.9 %. Furthermore, a pouch cell utilizing the prelithiated P-Si@rGO@C anode paired with LiNi1/3Co1/3Mn1/3O2 (NCM111) cathode delivers a high initial reversible capacity of 7.2 mAh and 76.8 % capacity retention after 100 cycles. This work provides insights into the application of commercial silicon-aluminum alloy powder in the anode of high-energy LIBs.
Collapse
Affiliation(s)
- Haofeng Shi
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Chengdeng Wang
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Jiashuai Wang
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Donghua Wang
- Institute of Carbon Neutrality and New Energy, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhihao Xiong
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Zhaokun Wang
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Zhi Wang
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Zhiming Bai
- School of Civil and Resource Engineering, University of Science and Technology, Beijing 100083, China
| | - Yan Gao
- Laboratory of Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaoqin Yan
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China.
| |
Collapse
|
2
|
Katsuyama Y, Yang Z, Thiel M, Zhang X, Chang X, Lin CW, Huang A, Wang C, Li Y, Kaner RB. A Rapid, Scalable Laser-Scribing Process to Prepare Si/Graphene Composites for Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305921. [PMID: 38342674 DOI: 10.1002/smll.202305921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Silicon has gained significant attention as a lithium-ion battery anode material due to its high theoretical capacity compared to conventional graphite. Unfortunately, silicon anodes suffer from poor cycling performance caused by their extreme volume change during lithiation and de-lithiation. Compositing silicon particles with 2D carbon materials, such as graphene, can help mitigate this problem. However, an unaddressed challenge remains: a simple, inexpensive synthesis of Si/graphene composites. Here, a one-step laser-scribing method is proposed as a straightforward, rapid (≈3 min), scalable, and less-energy-consuming (≈5 W for a few minutes under air) process to prepare Si/laser-scribed graphene (LSG) composites. In this research, two types of Si particles, Si nanoparticles (SiNPs) and Si microparticles (SiMPs), are used. The rate performance is improved after laser scribing: SiNP/LSG retains 827.6 mAh g-1 at 2.0 A gSi+C -1, while SiNP/GO (before laser scribing) retains only 463.8 mAh g-1. This can be attributed to the fast ion transport within the well-exfoliated 3D graphene network formed by laser scribing. The cyclability is also improved: SiNP/LSG retains 88.3% capacity after 100 cycles at 2.0 A gSi+C -1, while SiNP/GO retains only 57.0%. The same trend is found for SiMPs: the SiMP/LSG shows better rate and cycling performance than SiMP/GO composites.
Collapse
Affiliation(s)
- Yuto Katsuyama
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhiyin Yang
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Markus Thiel
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinyue Zhang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xueying Chang
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Cheng-Wei Lin
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ailun Huang
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Chenxiang Wang
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuzhang Li
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Richard B Kaner
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
3
|
Hamza M, Zhang S, Xu W, Wang D, Ma Y, Li X. Scalable engineering of hierarchical layered micro-sized silicon/graphene hybrids via direct foaming for lithium storage. NANOSCALE 2023; 15:14338-14345. [PMID: 37581287 DOI: 10.1039/d3nr02840b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Low-cost micro-sized silicon is an attractive replacement for commercial graphite anodes in advanced lithium-ion batteries (LIBs) but suffers from particle fracture during cycling. Hybridizing micro-sized silicon with conductive carbon materials, especially graphene, is a practical approach to overcome the volume change issue. However, micro-sized silicon/graphene anodes prepared via the conventional technique encounter sluggish Li+ transport due to the lack of efficient electrolyte diffusion channels. Here, we present a facile and scalable method to establish efficient Li+ transport channels through direct foaming from the laminated graphene oxide/micro-sized silicon membrane followed by annealing. The conductive graphene layers and the Li+ transport channels endow the composite material with excellent electronic and ionic conductivity. Moreover, the interconnected graphene layers provide a robust framework for micro-sized silicon particles, allowing them to transform decently in the graphene layer space. Consequently, the prepared hybrid material, namely foamed graphene/micro-sized Si (f-G-Si), can work as a binder-free and free-standing anode without additives and deliver remarkable electrochemical performance. Compared with the control samples, micro-sized silicon wrapped by laminated graphene layers (G-Si) and commercial micro-sized Si, f-G-Si maximizes the utilization of silicon and demonstrates superior performance, disclosing the role of Li+ diffusion channels. This study sheds light on the rational design and manufacture of silicon anodes and beyond.
Collapse
Affiliation(s)
- Mathar Hamza
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Siyuan Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Wenqiang Xu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Denghui Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Yingjie Ma
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
| | - Xianglong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100039, P.R. China
| |
Collapse
|
4
|
Zhou H, Zhou S, Ji X, Zhao Y, Lv Y, Cheng Y, Tao Y, Lu J, Du J, Wang H. High-performance cellulose acetate-based gas barrier films via tailoring reduced graphene oxide nanosheets. Int J Biol Macromol 2022; 209:1450-1456. [PMID: 35469945 DOI: 10.1016/j.ijbiomac.2022.04.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/05/2022]
Abstract
Improving the gas molecule barrier performance and structural stability of bio-plastic films dramatically contribute to packaging and protective fields. Herein, we proposed a novel nanocomposite film consisting of cellulose acetate (CA)/polyethyleneimine (PEI)/reduced graphene oxide (rGO)-NiCoFeOx) with high gas barrier property by applying "molecular glue" and "nano-patching" strategies. Systematical investigations demonstrated that the CA/rGO interfacial interaction was effectively enhanced due to the "molecular glue" role of PEI chains via physical/chemical bonds and the defective regions in rGO plane were nano-patched through hydrophilic interactions between edged oxygen-containing functional groups and ultrafine NiCoFeOx nanoparticles (~3 nm). As a result, the oxygen and moisture transmission rates of the prepared CA/PEI/rGO-NPs hybrid film were significantly reduced to 0.31 cm3 ∗ μm/(m2 ∗ d ∗ kPa) and 314.23 g/m2 ∗ 24 h, respectively, which were 99.60% and 54.69% lower than pristine CA films. Meanwhile, the tensile strength of hybrid film was increased from 25.90 MPa to 40.67 MPa. More importantly, the designed nanocomposite film possesses excellent structural stability without obvious GO layer shedding and hydrophobicity attenuation after persistent bending at least 100 times. The exceptional robust and high gas barrier film displays great promising application in food, agriculture, pharmaceuticals and electronic instruments packaging industry.
Collapse
Affiliation(s)
- Huimin Zhou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Siying Zhou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yali Zhao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Cheng
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Ahmed MK, Awwad NS, Ibrahium HA, Mostafa MS, Alqahtani MS, El-Morsy MA. Hydroxyapatite and Er2O3 are embedded within graphene oxide nanosheets for high improvement of their hardness and biological responses. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02249-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Critical roles of reduced graphene oxide in the electrochemical performance of silicon/reduced graphene oxide hybrids for high rate capable lithium-ion battery anodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|