1
|
Lin H, Yan T, Yang Q, Lin L, Liu L, Xi J. Electrochemical In Situ Characterization Techniques in the Field of Energy Conversion. SMALL METHODS 2025:e2401701. [PMID: 39780635 DOI: 10.1002/smtd.202401701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/30/2024] [Indexed: 01/11/2025]
Abstract
With the proposal of the "carbon peak and carbon neutrality" goals, the utilization of renewable energy sources such as solar energy, wind energy, and tidal energy has garnered increasing attention. Consequently, the development of corresponding energy conversion technologies has become a focal point. In this context, the demand for electrochemical in situ characterization techniques in the field of energy conversion is gradually increasing. Understanding the microscopic electrochemical reactions and their mechanisms in depth is a common concern shared by both academia and industry. Therefore, the development of electrochemical in situ characterization techniques holds critical significance. This paper comprehensively reviews electrochemical in situ characterization techniques in the field of energy conversion from three aspects: spectral characterization techniques of electrochemical reactions, characterization techniques for the spatial distribution of electrochemical reactions, and optical characterization techniques for the surface refractive index associated with the spatial distribution of electrochemical reactions. These characteristics are described in detail, and the future development direction of in situ characterization technology is prospected, with the aim of promoting the advancement of electrochemical in situ characterization technology in the field of energy conversion, facilitating energy transformation, and thus advancing the goals of "carbon peak and carbon neutrality."
Collapse
Affiliation(s)
- Hao Lin
- Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Tian Yan
- Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qi Yang
- Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Lin Lin
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Le Liu
- Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jingyu Xi
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
2
|
de Oliveira MAC, Brunet Cabré M, Schröder C, Nolan H, Pota F, Behan JA, Barrière F, McKelvey K, Colavita PE. Single-Entity Electrochemistry of N-Doped Graphene Oxide Nanostructures for Improved Kinetics of Vanadyl Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405220. [PMID: 39548927 PMCID: PMC11753488 DOI: 10.1002/smll.202405220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/29/2024] [Indexed: 11/18/2024]
Abstract
N-doped graphene oxides (GO) are nanomaterials of interest as building blocks for 3D electrode architectures for vanadium redox flow battery applications. N- and O-functionalities have been reported to increase charge transfer rates for vanadium redox couples. However, GO synthesis typically yields heterogeneous nanomaterials, making it challenging to understand whether the electrochemical activity of conventional GO electrodes results from a sub-population of GO entities or sub-domains. Herein, single-entity voltammetry studies of vanadyl oxidation at N-doped GO using scanning electrochemical cell microscopy (SECCM) are reported. The electrochemical response is mapped at sub-domains within isolated flakes and found to display significant heterogeneity: small active sites are interspersed between relatively large inert sub-domains. Correlative Raman-SECCM analysis suggests that defect densities are not useful predictors of activity, while the specific chemical nature of defects might be a more important factor for understanding oxidation rates. Finite element simulations of the electrochemical response suggest that active sub-domains/sites are smaller than the mean inter-defect distance estimated from Raman spectra but can display very fast heterogeneous rate constants >1 cm s-1. These results indicate that N-doped GO electrodes can deliver on intrinsic activity requirements set out for the viable performance of vanadium redox flow battery devices.
Collapse
Affiliation(s)
| | | | | | - Hugo Nolan
- School of ChemistryTrinity College DublinDublin2Ireland
| | - Filippo Pota
- School of ChemistryTrinity College DublinDublin2Ireland
| | - James A. Behan
- Univ RennesCNRSInstitut des Sciences Chimiques de Rennes – UMR 6226RennesF‐35000France
| | - Frédéric Barrière
- Univ RennesCNRSInstitut des Sciences Chimiques de Rennes – UMR 6226RennesF‐35000France
| | - Kim McKelvey
- MacDiarmid Institute for Advanced Materials and NanotechnologySchool of Chemical and Physical SciencesVictoria University of WellingtonWellington6012New Zealand
| | | |
Collapse
|
3
|
Du R, Zhong Q, Tan X, Liao L, Tang Z, Chen S, Yan D, Zhao X, Zeng F. Optimized Electrodeposition of Ni 2O 3 on Carbon Paper for Enhanced Electrocatalytic Oxidation of Ethanol. ACS OMEGA 2024; 9:30404-30414. [PMID: 39035965 PMCID: PMC11256107 DOI: 10.1021/acsomega.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 07/23/2024]
Abstract
The urgent need for sustainable and efficient energy conversion technologies has propelled research into novel electrocatalysts for fuel cell applications. This study investigates a carbon paper (CP)-supported Ni2O3 catalyst for the electrocatalytic oxidation of ethanol. We utilized electrodeposition to uniformly deposit/dop Ni2O3 onto the CP, creating an effective electrocatalyst. Our approach allows the tailoring of the doping degree by adjusting the electrodeposition potential. The optimal doping degree, achieved at a medium deposition potential, results in an electrode with high intrinsic activity and a substantial electrochemically active surface area (ECSA), thereby enhancing its electrocatalytic activity. This catalyst efficiently facilitates the oxidation of ethanol to formic acid while maintaining good stability. The enhanced performance is attributed to the effective interface and interaction between Ni2O3 and CP. This work not only provides insights into the design of efficient Ni-based catalysts for ethanol oxidation but also paves the way for developing advanced materials for renewable energy conversion.
Collapse
Affiliation(s)
- Ruixing Du
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Qitong Zhong
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xing Tan
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Longfei Liao
- School
of Materials Science and Engineering, Harbin
Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Zhenchen Tang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Shiming Chen
- School
of Intelligent Medicine, China Medical University, Shenyang 110122, Liaoning, China
| | - Dafeng Yan
- College
of Chemistry and Chemical Engineering, Hubei
University, Wuhan 430062, China
| | - Xuebin Zhao
- Technology
Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Feng Zeng
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| |
Collapse
|
4
|
Zhang X, Valencia A, Li W, Ao K, Shi J, Yue X, Zhang R, Daoud WA. Decoupling Activation and Transport by Electron-Regulated Atomic-Bi Harnessed Surface-to-Pore Interface for Vanadium Redox Flow Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305415. [PMID: 37607471 DOI: 10.1002/adma.202305415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Indexed: 08/24/2023]
Abstract
Vanadium redox flow battery (VRFB) promises a route to low-cost and grid-scale electricity storage using renewable energy resources. However, the interplay of mass transport and activation processes of high-loading catalysts makes it challenging to drive high-performance density VRFB. Herein, a surface-to-pore interface design that unlocks the potential of atomic-Bi-exposed catalytic surface via decoupling activation and transport is reported. The functional interface accommodates electron-regulated atomic-Bi catalyst in an asymmetric Bi─O─Mn structure that expedites the V3+ /V2+ conversion, and a mesoporous Mn3 O4 sub-scaffold for rapid shuttling of redox-active species, whereby the site accessibility is maximized, contrary to conventional transport-limited catalysts. By in situ grafting this interface onto micron-porous carbon felt (Bi1 -sMn3 O4 -CF), a high-performance flow battery is achieved, yielding a record high energy efficiency of 76.72% even at a high current density of 400 mA cm-2 and a peak power density of 1.503 W cm-2 , outdoing the battery with sMn3 O4 -CF (62.60%, 0.978 W cm-2 ) without Bi catalyst. Moreover, this battery renders extraordinary durability of over 1500 cycles, bespeaking a crucial breakthrough toward sustainable redox flow batteries (RFBs).
Collapse
Affiliation(s)
- Xiangyang Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Agnes Valencia
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Weilu Li
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Kelong Ao
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Jihong Shi
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Xian Yue
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Ruiqin Zhang
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Walid A Daoud
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| |
Collapse
|
5
|
Zhang X, Ye X, Valencia A, Liu F, Ao K, Yue X, Shi J, Daoud WA, Zhou X. Asymmetric Chemical Potential Activated Nanointerfacial Electric Field for Efficient Vanadium Redox Flow Batteries. ACS NANO 2023; 17:21799-21812. [PMID: 37862692 DOI: 10.1021/acsnano.3c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Constructing active sites with enhanced intrinsic activity and accessibility in a confined microenvironment is critical for simultaneously upgrading the round-trip efficiency and lifespan of all-vanadium redox flow battery (VRFB) yet remains under-explored. Here, we present nanointerfacial electric fields (E-fields) featuring outstanding intrinsic activity embodied by binary Mo2C-Mo2N sublattice. The asymmetric chemical potential on both sides of the reconstructed heterogeneous interface imposes the charge movement and accumulation near the atomic-scale N-Mo-C binding region, eliciting the configuration of an accelerator-like E-field from Mo2N to Mo2C sublattice. Supported with theoretical calculations and intrinsic activity tests, the improved vanadium ion adsorption behavior and charge-transfer process at the nanointerfacial sites were further substantiated, hence expediting the electrochemical kinetics. Accordingly, the pronounced promotion is achieved in the resultant flow battery, yielding an energy efficiency of 77.7% and an extended lifespan of 1000 cycles at 300 mA cm-2, outperforming flow cells with conventional single catalysts in most previous reports.
Collapse
Affiliation(s)
- Xiangyang Zhang
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong 999077, China
| | - Xiaolin Ye
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Agnes Valencia
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong 999077, China
| | - Fei Liu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong 999077, China
| | - Kelong Ao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
| | - Xian Yue
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518060, China
| | - Jihong Shi
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong 999077, China
| | - Walid A Daoud
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong 999077, China
| | - Xuelong Zhou
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Wu M, Fang M, Nan M, Chen X, Ma X. Recent Advances for Electrode Modifications in Flow Batteries: Properties, Mechanisms, and Outlooks. Chem Asian J 2023; 18:e202201242. [PMID: 36644999 DOI: 10.1002/asia.202201242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
Flow batteries (FBs) have been demonstrated in several large-scale energy storage projects, and are considered to be the preferred technique for large-scale long-term energy storage in terms of their high safety, environmental friendliness, and long life, including all-vanadium flow batteries (VFBs) and Fe-Cr flow batteries (ICFBs). As the electrochemical reaction site, the electrode parameters, such as the specific surface area, active site, and so on, have a significant impact on the flow battery performance and reliability. Extensive research has been carried out on electrode modification to improve the current density and energy efficiency of the FBs. In this review, the reaction mechanisms of VFBs and ICFBs are discussed in detail firstly, and then the electrodes modification methods are overviewed and summarized from four aspects: self-modification, carbon-based electrocatalysts, metal-based electrocatalysts and composite electrocatalysts. Finally, the recent catalytic mechanism, in situ characterization technology, and future research directions are presented.
Collapse
Affiliation(s)
- Min Wu
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, P. R China
| | - Maolin Fang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, P. R China
| | - Mingjun Nan
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, P. R China
| | - Xiangnan Chen
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, P. R China
| | - Xiangkun Ma
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, P. R China
| |
Collapse
|