1
|
Kumar J, Xu M, Li YA, You SW, Doherty BM, Gardiner WD, Cirrito JR, Yuede CM, Benegal A, Vahey MD, Joshi A, Seehra K, Boon ACM, Huang YY, Puthussery JV, Chakrabarty RK. Capacitive Biosensor for Rapid Detection of Avian (H5N1) Influenza and E. coli in Aerosols. ACS Sens 2025; 10:3381-3389. [PMID: 39982783 DOI: 10.1021/acssensors.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Airborne transmission via aerosols is a dominant route for the transmission of respiratory pathogens, including avian H5N1 influenza A virus and E. coli bacteria. Rapid and direct detection of respiratory pathogen aerosols has been a long-standing technical challenge. Herein, we develop a novel label-free capacitive biosensor using an interlocked Prussian blue (PB)/graphene oxide (GO) network on a screen-printed carbon electrode (SPCE) for direct detection of avian H5N1 and E. coli. A single-step electro-co-deposition process grows GO branches on the SPCE surface, while the PB nanocrystals simultaneously decorate around the GO branches, resulting in an ultrasensitive capacitive response at nanofarad levels. We tested the biosensor for H5N1 concentrations from 2.0 viral RNA copies/mL to 1.6 × 105 viral RNA copies/mL, with a limit of detection (LoD) of 56 viral RNA copies/mL. We tested it on E. coli for concentrations ranging from 2.0 bacterial cells/mL to 1.8 × 104 bacterial cells/mL, with a LoD of 5 bacterial cells/mL. The detection times for both pathogens were under 5 min. When integrated with a custom-built wet cyclone bioaerosol sampler, our biosensor could detect and quasi-quantitatively estimate H5N1 and E. coli concentrations in air with spatial resolutions of 93 viral RNA copies/m3 and 8 bacterial cells/m3, respectively. The quasi-quantification method, based on dilution and binary detection (positive/negative), achieved an overall accuracy of >90% for pathogen-laden aerosol samples. This biosensor is adaptable for multiplexed detection of other respiratory pathogens, making it a versatile tool for real-time airborne pathogen monitoring and risk assessment.
Collapse
Affiliation(s)
- Joshin Kumar
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Meng Xu
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yuezhi August Li
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Shu-Wen You
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brookelyn M Doherty
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Woodrow D Gardiner
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - John R Cirrito
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Carla M Yuede
- Department of Psychiatry, Washington University in St. Louis, St. Louis, St. Louis, Missouri 63110, United States
| | - Ananya Benegal
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Michael D Vahey
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Astha Joshi
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Kuljeet Seehra
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Adrianus C M Boon
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, United States
- Departments Molecular Microbiology, and Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Yin-Yuan Huang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Joseph V Puthussery
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Rajan K Chakrabarty
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
2
|
Abhinav V, Basu P, Verma SS, Verma J, Das A, Kumari S, Yadav PR, Kumar V. Advancements in Wearable and Implantable BioMEMS Devices: Transforming Healthcare Through Technology. MICROMACHINES 2025; 16:522. [PMID: 40428648 PMCID: PMC12113605 DOI: 10.3390/mi16050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025]
Abstract
Wearable and implantable BioMEMSs (biomedical microelectromechanical systems) have transformed modern healthcare by enabling continuous, personalized, and minimally invasive monitoring, diagnostics, and therapy. Wearable BioMEMSs have advanced rapidly, encompassing a diverse range of biosensors, bioelectronic systems, drug delivery platforms, and motion tracking technologies. These devices enable non-invasive, real-time monitoring of biochemical, electrophysiological, and biomechanical signals, offering personalized and proactive healthcare solutions. In parallel, implantable BioMEMS have significantly enhanced long-term diagnostics, targeted drug delivery, and neurostimulation. From continuous glucose and intraocular pressure monitoring to programmable drug delivery and bioelectric implants for neuromodulation, these devices are improving precision treatment by continuous monitoring and localized therapy. This review explores the materials and technologies driving advancements in wearable and implantable BioMEMSs, focusing on their impact on chronic disease management, cardiology, respiratory care, and glaucoma treatment. We also highlight their integration with artificial intelligence (AI) and the Internet of Things (IoT), paving the way for smarter, data-driven healthcare solutions. Despite their potential, BioMEMSs face challenges such as regulatory complexities, global standardization, and societal determinants. Looking ahead, we explore emerging directions like multifunctional systems, biodegradable power sources, and next-generation point-of-care diagnostics. Collectively, these advancements position BioMEMS as pivotal enablers of future patient-centric healthcare systems.
Collapse
Affiliation(s)
- Vishnuram Abhinav
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India;
| | - Prithvi Basu
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Shikha Supriya Verma
- Integrated Disease Surveillance Program, National Health Mission, Guwahati 781005, Assam, India
| | - Jyoti Verma
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Atanu Das
- Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Savita Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Prateek Ranjan Yadav
- School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Vibhor Kumar
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Chen C, Wei S, Zhang Q, Yang H, Xu J, Chen L, Liu X. High-performance VO 2/CNT@PANI with core-shell construction enable printable in-planar symmetric supercapacitors. J Colloid Interface Sci 2024; 664:53-62. [PMID: 38458055 DOI: 10.1016/j.jcis.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
As a progressive electronic energy storage device, the flexible supercapacitor holds tremendous promise for powering wearable/portable electronic products. Of various pseudocapacitor materials, vanadium dioxide (VO2) has garnered extensive attention due to its impressive theoretical capacitance. However, the challenges of inferior cycling life and lower energy density to be addressed. Herein, we prepare VO2 nanorods with winding carbon nanotubes (CNT) via a facile solvothermal route, followed by in situ polymerization of polyaniline (PANI) shell. Taking full advantage of the synergistic effect, the VO2/CNT@PANI composite delivers a high specific capacitance of 354.2F/g at 0.5 A/g and a long cycling life of ∼ 88.2 % over 5000 cycles resulting from the enhanced conductivity of CNT and stabilization of PANI shell. By screen printing the formulated inks with outstanding rheological behaviours, we manufacture an in-planar VO2/CNT@PANI symmetric supercapacitor (VO2/CNT@PANI SSC) device featuring an orderly arrangement structure. This device yields a remarkable areal energy density of 99.57 μWh/cm2 at a power density of 387.5 μW/cm2 while retaining approximately ∼ 87.6 % of its initial capacitance after prolonged use. Furthermore, we successfully powered a portable game machine for more than 2 min using two SSCs connected in series with ease. Therefore, this work presents a universal strategy that utilises combination and coating to boost electrochemical performance for flexible high-performance supercapacitors.
Collapse
Affiliation(s)
- Cheng Chen
- Electronic Information School, Wuhan University, Wuhan 480032, China
| | - Shiwen Wei
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen 448000, China
| | - Qiang Zhang
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen 448000, China
| | - Huijun Yang
- Electronic Information School, Wuhan University, Wuhan 480032, China
| | - Jiaxin Xu
- Electronic Information School, Wuhan University, Wuhan 480032, China
| | - Liangzhe Chen
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen 448000, China.
| | - Xinghai Liu
- Electronic Information School, Wuhan University, Wuhan 480032, China.
| |
Collapse
|
4
|
Chen Y, Wang Y, Zhang Y, Wang X, Zhang C, Cheng N. Intelligent Biosensors Promise Smarter Solutions in Food Safety 4.0. Foods 2024; 13:235. [PMID: 38254535 PMCID: PMC10815208 DOI: 10.3390/foods13020235] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Food safety is closely related to human health. However, the regulation and testing processes for food safety are intricate and resource-intensive. Therefore, it is necessary to address food safety risks using a combination of deep learning, the Internet of Things, smartphones, quick response codes, smart packaging, and other smart technologies. Intelligent designs that combine digital systems and advanced functionalities with biosensors hold great promise for revolutionizing current food safety practices. This review introduces the concept of Food Safety 4.0, and discusses the impact of intelligent biosensors, which offer attractive smarter solutions, including real-time monitoring, predictive analytics, enhanced traceability, and consumer empowerment, helping improve risk management and ensure the highest standards of food safety.
Collapse
Affiliation(s)
- Yuehua Chen
- School of Electrical and Information, Northeast Agricultural University, Harbin 150030, China;
| | - Yicheng Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Yiran Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (C.Z.)
| | - Xin Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (C.Z.)
| | - Chen Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (C.Z.)
| | - Nan Cheng
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (C.Z.)
| |
Collapse
|
5
|
Li W, Chen W, Ma L, Yang J, Gao M, Wang K, Yu H, Lv R, Fu M. Robust double-network polyvinyl alcohol-polypyrrole hydrogels as high-performance electrodes for flexible supercapacitors. J Colloid Interface Sci 2023; 652:540-548. [PMID: 37607416 DOI: 10.1016/j.jcis.2023.08.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
The growing demands of flexible and wearable electronic devices boost the rapid development of flexible supercapacitors (FSCs). Conductive hydrogels are considered to be one type of promising electrode materials for FSCs due to their good processability and electrochemical properties. However, the poor mechanical properties of conductive hydrogels hinder their practical applications. Building robust cross-linked network structures is a feasible way to enhance their mechanical properties. Herein, the double-network polyvinyl alcohol (PVA)-polypyrrole (PPy) conductive hydrogels are synthesized by the freeze-thaw and in-situ polymerization method. The double-network structure not only enhances mechanical properties of the hydrogels, but also promotes their electrolyte ion transport. The maximum elongation at break of the optimized PVA-PPy hydrogels can reach 156.4%, and the specific capacitance is 1718.7 mF cm-2 at 0.5 mA cm-2. Furthermore, the energy densities of the symmetrical PVA-PPy FSCs are 46.7 and 13.3 μWh cm-2 at power densities of 200.0 and 2000.0 μW cm-2. Such excellent electrochemical performances and mechanical properties make the synthesized PVA-PPy hydrogels a promising candidate for FSCs.
Collapse
Affiliation(s)
- Wenzheng Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wei Chen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Linzheng Ma
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jing Yang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Meng Gao
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Kunhua Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hao Yu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ruitao Lv
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Min Fu
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
6
|
Al Shboul A, Ketabi M, Skaf D, Nyayachavadi A, Lai Fak Yu T, Rautureau T, Rondeau-Gagné S, Izquierdo R. Graphene Inks Printed by Aerosol Jet for Sensing Applications: The Role of Dispersant on the Inks' Formulation and Performance. SENSORS (BASEL, SWITZERLAND) 2023; 23:7151. [PMID: 37631688 PMCID: PMC10458541 DOI: 10.3390/s23167151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
This study presents graphene inks produced through the liquid-phase exfoliation of graphene flakes in water using optimized concentrations of dispersants (gelatin, triton X-100, and tween-20). The study explores and compares the effectiveness of the three different dispersants in creating stable and conductive inks. These inks can be printed onto polyethylene terephthalate (PET) substrates using an aerosol jet printer. The investigation aims to identify the most suitable dispersant to formulate a high-quality graphene ink for potential applications in printed electronics, particularly in developing chemiresistive sensors for IoT applications. Our findings indicate that triton X-100 is the most effective dispersant for formulating graphene ink (GTr), which demonstrated electrical conductivity (4.5 S·cm-1), a high nanofiller concentration of graphene flakes (12.2%) with a size smaller than 200 nm (<200 nm), a low dispersant-to-graphene ratio (5%), good quality as measured by Raman spectroscopy (ID/IG ≈ 0.27), and good wettability (θ ≈ 42°) over PET. The GTr's ecological benefits, combined with its excellent printability and good conductivity, make it an ideal candidate for manufacturing chemiresistive sensors that can be used for Internet of Things (IoT) healthcare and environmental applications.
Collapse
Affiliation(s)
- Ahmad Al Shboul
- Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada (T.R.)
| | - Mohsen Ketabi
- Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada (T.R.)
| | - Daniella Skaf
- Department of Chemistry and Biochemistry, Advanced Materials Centre of Research, University of Windsor, Windsor, ON N9B 3P4, Canada (A.N.); (S.R.-G.)
| | - Audithya Nyayachavadi
- Department of Chemistry and Biochemistry, Advanced Materials Centre of Research, University of Windsor, Windsor, ON N9B 3P4, Canada (A.N.); (S.R.-G.)
| | - Thierry Lai Fak Yu
- Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada (T.R.)
| | - Tom Rautureau
- Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada (T.R.)
| | - Simon Rondeau-Gagné
- Department of Chemistry and Biochemistry, Advanced Materials Centre of Research, University of Windsor, Windsor, ON N9B 3P4, Canada (A.N.); (S.R.-G.)
| | - Ricardo Izquierdo
- Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada (T.R.)
| |
Collapse
|
7
|
Chang H, Huo M, Zhang Q, Zhou M, Zhang Y, Si Y, Zhang D, Guo Y, Fang Y. Flexible needle-type Microbiosensor for real-time monitoring traditional acupuncture-mediated adenosine release In vivo. Biosens Bioelectron 2023; 235:115383. [PMID: 37207583 DOI: 10.1016/j.bios.2023.115383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Rapid adenosine (ADO) signaling, on the time frame of seconds, regulates physiological and pathological processes, including the therapeutic efficacy of acupuncture. Nevertheless, standard monitoring strategies are limited by poor temporal resolution. Herein, an implantable needle-type microsensor capable of monitoring ADO release in vivo in response to acupuncture in real time has been developed. Electrocatalytic Prussian Blue nanoparticles, an immobilized multienzyme system, and a permselective poly-o-phenylenediamine-based membrane were used for the sequential modification of the sensing region of the electrode. The resultant sensor can perform amperometric measurements of ADO levels in response to a very low level of applied potential (-0.05 V vs Ag/AgCl). This microsensor also functioned across a broad linear range (0-50 μM) and exhibited good sensitivity (1.1 nA/μM) with a rapid response time of under 5 s. Importantly, the sensor also exhibited good reproducibility and high selectivity. For in vivo animal studies, the microsensor was employed for the continuous assessment of instantaneous ADO release at the ST36 (Zusanli) acupoint when this acupoint was subjected to twirling-rotating acupuncture manipulation. Benefiting from superior sensor in vivo performance and stability, the positive correlation between the variability in acupuncture-induced ADO release and the stimulus intensity levels that affect the clinical benefit can be demonstrated for the first time. Overall, these results highlight a powerful approach to analyzing the in vivo physiological effects of acupuncture, expanding application realm of micro-nano sensor technology on a fast time scale.
Collapse
Affiliation(s)
- Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China.
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
8
|
Iwama T, Inoue KY, Shiku H. Fabrication of High-Density Vertical Closed Bipolar Electrode Arrays by Carbon Paste Filling Method for Two-Dimensional Chemical Imaging. Anal Chem 2022; 94:8857-8866. [PMID: 35700401 DOI: 10.1021/acs.analchem.1c05354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, a carbon paste filling method was proposed as a simple strategy for fabricating high-density bipolar electrode (BPE) arrays for bipolar electrochemical microscopy (BEM). High spatiotemporal resolution imaging was achieved using the fabricated BPE array. BEM, which is an emerging microscopic system in recent years, achieves label-free and high spatiotemporal resolution imaging of molecular distributions using high-density BPE arrays and electrochemiluminescence (ECL) signals. We devised a simple method to fabricate a BPE array by filling a porous plate with carbon paste and succeeded in fabricating a high-density BPE array (15 μm pitch). After a detailed observation of the surface of the BPE array using a scanning electron microscope, the basic electrochemical and ECL emission characteristics were evaluated using potassium ferricyanide solution as a sample solution. Moreover, inflow imaging of the sample molecules was conducted to evaluate the imaging ability of the prepared BPE array. In addition, Prussian Blue containing carbon ink was applied to the sample solution side of the BPE array to provide catalytic activity to hydrogen peroxide, and the quantification and inflow imaging of hydrogen peroxide by ECL signals was achieved. This simple fabrication method of the BPE array can accelerate the research and development of BEM. Furthermore, hydrogen peroxide imaging by BEM is an important milestone for achieving bioimaging with high spatiotemporal resolution such as biomolecule imaging using enzymes.
Collapse
Affiliation(s)
- Tomoki Iwama
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi 980-8579, Japan
| | - Kumi Y Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi 980-8579, Japan.,Center for Basic Education, Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi 980-8579, Japan.,Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki Aoba, Aoba, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
9
|
Ma J, Du Y, Jiang Y, Shen L, Ma H, Lv F, Cui Z, Pan Y, Shi L, Zhu N. Wearable healthcare smart electrochemical biosensors based on co-assembled prussian blue-graphene film for glucose sensing. Mikrochim Acta 2022; 189:46. [PMID: 34985727 DOI: 10.1007/s00604-021-05087-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Wearable film-based smart biosensors have been developed for real-time biomolecules detection. Particularly, interfacial co-assembly of reduced graphene oxide-prussian blue (PB-RGO) film through electrostatic interaction has been systematically studied by controllable pH values, achieving optimal PB-RGO nanofilms at oil/water (O/W) phase interface driven by minimization of interfacial free energy for wearable biosensors. As a result, as-prepared wearable biosensors of PB-RGO film could be easily woven into fabrics, exhibiting excellent glucose sensing performance in amperometric detection with a sensitivity of 27.78 µA mM-1 cm-2 and a detection limit of 7.94 μM, as well as impressive mechanical robustness of continuously undergoing thousands of bending or twist. Moreover, integrated wearable smartsensing system could realize remotely real-time detection of biomarkers in actual samples of beverages or human sweat via cellphones. Prospectively, interfacial co-assembly engineering driven by pH-induced electrostatic interaction would provide a simple and efficient approach for acquiring functional graphene composites films, and further fabricate wearable smartsensing devices in health monitoring fields.
Collapse
Affiliation(s)
- Junlin Ma
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yuhang Du
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yu Jiang
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Liuxue Shen
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Hongting Ma
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Fengjuan Lv
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Zewei Cui
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yuzhen Pan
- School of Chemical Engineering, Dalian University of Technology, Dalian , 116024, Liaoning, China
| | - Lei Shi
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
10
|
Jiang Y, Yang Y, Shen L, Ma J, Ma H, Zhu N. Recent Advances of Prussian Blue-Based Wearable Biosensors for Healthcare. Anal Chem 2021; 94:297-311. [PMID: 34874165 DOI: 10.1021/acs.analchem.1c04420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China.,Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yupeng Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Liuxue Shen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|