1
|
Raffone F, Khatib R, Sulpizi M, Cucinotta C. Revealing the molecular interplay of coverage, wettability, and capacitive response at the Pt(111)-water solution interface under bias. Commun Chem 2025; 8:58. [PMID: 39994357 PMCID: PMC11850831 DOI: 10.1038/s42004-025-01446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
While electrified interfaces are crucial for electrocatalysis and corrosion, their molecular morphology remains largely unknown. Through highly realistic ab initio molecular dynamics simulations of the Pt(111)-water solution interface in reducing conditions, we reveal a deep interconnection among electrode coverage, wettability, capacitive response, and catalytic activity. We identify computationally the experimentally hypothesised states for adsorbed hydrogen on Pt, HUPD and HOPD, revealing their role in governing interfacial water reorientation and hydrogen evolution. The transition between these two H states with increasing potential, induces a shift from a hydrophobic to a hydrophilic interface and correlates with a change in the primary electrode screening mechanism. This results in a slope change in differential capacitance, marking the onset of the experimentally observed peak around the potential of zero charge. Our work produces crucial insights for advancing electrocatalytic energy conversion, developing deep understanding of electrified interfaces.
Collapse
Affiliation(s)
- Federico Raffone
- Department of Chemistry and Thomas Young Centre, Imperial College London, London, UK
| | - Rémi Khatib
- Department of Physics, Johannes Gutenberg University, Mainz, DE, Germany
- 4 rue Roland Oudot, Créteil, France
| | | | - Clotilde Cucinotta
- Department of Chemistry and Thomas Young Centre, Imperial College London, London, UK.
| |
Collapse
|
2
|
Andersson L, Sprik M, Hutter J, Zhang C. Electronic Response and Charge Inversion at Polarized Gold Electrode. Angew Chem Int Ed Engl 2025; 64:e202413614. [PMID: 39313472 DOI: 10.1002/anie.202413614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
We have studied polarized Au(100) and Au(111) electrodes immersed in electrolyte solution by implementing finite-field methods in density functional theory-based molecular dynamics simulations. This allows us to directly compute the Helmholtz capacitance of electric double layer by including both electronic and ionic degrees of freedom, and the results turn out to be in excellent agreement with experiments. It is found that the electronic response of Au electrode makes a crucial contribution to the high Helmholtz capacitance and the instantaneous adsorption of Cl can lead to a charge inversion on the anodic polarized Au(100) surface. These findings point out ways to improve popular semi-classical models for simulating electrified solid-liquid interfaces and to identify the nature of surface charges therein which are difficult to access in experiments.
Collapse
Affiliation(s)
- Linnéa Andersson
- Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, BOX 538, 75121, Uppsala
| | - Michiel Sprik
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, United Kingdom
| | - Jürg Hutter
- Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Chao Zhang
- Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, BOX 538, 75121, Uppsala
| |
Collapse
|
3
|
Schott C, Schneider PM, Song KT, Yu H, Götz R, Haimerl F, Gubanova E, Zhou J, Schmidt TO, Zhang Q, Alexandrov V, Bandarenka AS. How to Assess and Predict Electrical Double Layer Properties. Implications for Electrocatalysis. Chem Rev 2024; 124:12391-12462. [PMID: 39527623 PMCID: PMC11613321 DOI: 10.1021/acs.chemrev.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The electrical double layer (EDL) plays a central role in electrochemical energy systems, impacting charge transfer mechanisms and reaction rates. The fundamental importance of the EDL in interfacial electrochemistry has motivated researchers to develop theoretical and experimental approaches to assess EDL properties. In this contribution, we review recent progress in evaluating EDL characteristics such as the double-layer capacitance, highlighting some discrepancies between theory and experiment and discussing strategies for their reconciliation. We further discuss the merits and challenges of various experimental techniques and theoretical approaches having important implications for aqueous electrocatalysis. A strong emphasis is placed on the substantial impact of the electrode composition and structure and the electrolyte chemistry on the double-layer properties. In addition, we review the effects of temperature and pressure and compare solid-liquid interfaces to solid-solid interfaces.
Collapse
Affiliation(s)
- Christian
M. Schott
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Peter M. Schneider
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Kun-Ting Song
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Haiting Yu
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Rainer Götz
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Felix Haimerl
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- BMW
AG, Petuelring 130, 80809 München, Germany
| | - Elena Gubanova
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Jian Zhou
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Thorsten O. Schmidt
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Qiwei Zhang
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- State
Key Laboratory of Urban Water Resource and Environment, School of
Environment, Harbin Institute of Technology, Harbin 150090, People’s Republic of China
| | - Vitaly Alexandrov
- Department
of Chemical and Biomolecular Engineering and Nebraska Center for Materials
and Nanoscience, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Aliaksandr S. Bandarenka
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Straße 1, 85748 Garching bei München, Germany
| |
Collapse
|
4
|
Chai Z, Luber S. Grand Canonical Ensemble Approaches in CP2K for Modeling Electrochemistry at Constant Electrode Potentials. J Chem Theory Comput 2024. [PMID: 39240723 DOI: 10.1021/acs.jctc.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
In electrochemical experiments, the number of electrons of the electrode immersed in the electrolyte is usually variable. Additionally, the numbers of adsorbed substances on the surface of the electrode, the solvent molecules, and counter charge ions in the near-surface region can also vary. Treating electrochemical solid-liquid interfaces with the typical fixed electron number density functional theory (DFT) approach tends to be a challenge. This can be addressed by using grand canonical ensemble approaches. We present the implementation of two grand canonical ensemble approaches in the open-source computational chemistry software CP2K that go beyond the existing canonical ensemble paradigm. The first approach is based on implicit solvent models and explicit atomistic solute (electrode with/without adsorbed species) models, and includes two recent developments: (a) grand canonical self-consistent field (GC-SCF) method (J. Chem. Phys. 2017, 146, 114104) allowing the electron number of the system to fluctuate naturally and accordingly with the experimental electrode potential, (b) planar counter charge (J. Chem. Phys. 2019, 150, 041722, Phys. Rev. B 2003, 68, 245416) salt model completely screening the net charge of the electrode model. In contrast with previous studies, in our implementation, the work function (WF) (absolute electrode potential if the potential drop at the electrolyte-vacuum interface is omitted) is the constrained quantity during an SCF optimization instead of the Fermi energy. The chemical potential of electrons (negative WF) is a natural variable of the grand potential in the GC ensemble of electronic states, and this method can easily achieve stable SCF convergence and obtain an electronic structure that precisely corresponds to a user-specified WF. The second approach referred to as the GC DFT molecular dynamics (DFT-MD) simulation scheme (Phys. Rev. Lett. 2002, 88, 213002, J. Chem. Phys. 2005, 122, 234505, J. Am. Chem. Soc. 2004, 126 (12), 3928-3938) is based on fully explicit modeling the solvent molecules and the ions and is used to calculate the electron chemical potential corresponding to an equilibrium electrochemical half-reaction (M(n+m)+ + ne- ⇌ Mm+) which involves DFT-MD, by allowing the number of electrons to vary during the DFT-MD simulation process. This opens the way for forefront electrochemical calculations in CP2K for a broad range of systems.
Collapse
Affiliation(s)
- Ziwei Chai
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Ahart CS, Chulkov SK, Cucinotta CS. Enabling Ab Initio Molecular Dynamics under Bias: The CP2K+SMEAGOL Interface for Integrating Density Functional Theory and Non-Equilibrium Green Functions. J Chem Theory Comput 2024; 20:6772-6780. [PMID: 39013589 PMCID: PMC11325543 DOI: 10.1021/acs.jctc.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Density functional theory (DFT) combined with non-equilibrium Green's functions (NEGF) is a powerful approach to model quantum transport under external bias potentials at reasonable computational cost. In this work, we present a new interface between the popular mixed Gaussian/plane waves electronic structure package, CP2K, and the NEGF, code SMEAGOL, the most feature-rich implementation of DFT-NEGF available for CP2K to date. The CP2K+SMEAGOL interface includes the implementation of current induced forces. We verify this implementation for a variety of systems: an infinite 1D Au wire, a parallel-plate capacitor, and a Au-H2-Au junction. We find good agreement with SMEAGOL calculations performed with SIESTA for the same systems and with the example of a solvated Au wire demonstrating for the first time that DFT-NEGF can be used to perform molecular dynamics simulations under bias of large-scale condensed phase systems under realistic operating conditions.
Collapse
Affiliation(s)
- Christian S Ahart
- Imperial College London, Department of Chemistry and Thomas Young Centre, Molecular Sciences Research Hub, London W12 0BZ, U.K
| | - Sergey K Chulkov
- University of Lincoln, School of Mathematics and Physics, Lincoln LN6 7TS, U.K
| | - Clotilde S Cucinotta
- Imperial College London, Department of Chemistry and Thomas Young Centre, Molecular Sciences Research Hub, London W12 0BZ, U.K
| |
Collapse
|
6
|
Levell Z, Le J, Yu S, Wang R, Ethirajan S, Rana R, Kulkarni A, Resasco J, Lu D, Cheng J, Liu Y. Emerging Atomistic Modeling Methods for Heterogeneous Electrocatalysis. Chem Rev 2024; 124:8620-8656. [PMID: 38990563 DOI: 10.1021/acs.chemrev.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Heterogeneous electrocatalysis lies at the center of various technologies that could help enable a sustainable future. However, its complexity makes it challenging to accurately and efficiently model at an atomic level. Here, we review emerging atomistic methods to simulate the electrocatalytic interface with special attention devoted to the components/effects that have been challenging to model, such as solvation, electrolyte ions, electrode potential, reaction kinetics, and pH. Additionally, we review relevant computational spectroscopy methods. Then, we showcase several examples of applying these methods to understand and design catalysts relevant to green hydrogen. We also offer experimental views on how to bridge the gap between theory and experiments. Finally, we provide some perspectives on opportunities to advance the field.
Collapse
Affiliation(s)
- Zachary Levell
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiabo Le
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China
| | - Saerom Yu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ruoyu Wang
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sudheesh Ethirajan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Joaquin Resasco
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Deyu Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory, Xiamen 361005, China
| | - Yuanyue Liu
- Texas Materials Institute and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Grisafi A, Salanne M. Accelerating QM/MM simulations of electrochemical interfaces through machine learning of electronic charge densities. J Chem Phys 2024; 161:024109. [PMID: 38984956 DOI: 10.1063/5.0218379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
A crucial aspect in the simulation of electrochemical interfaces consists in treating the distribution of electronic charge of electrode materials that are put in contact with an electrolyte solution. Recently, it has been shown how a machine-learning method that specifically targets the electronic charge density, also known as SALTED, can be used to predict the long-range response of metal electrodes in model electrochemical cells. In this work, we provide a full integration of SALTED with MetalWalls, a program for performing classical simulations of electrochemical systems. We do so by deriving a spherical harmonics extension of the Ewald summation method, which allows us to efficiently compute the electric field originated by the predicted electrode charge distribution. We show how to use this method to drive the molecular dynamics of an aqueous electrolyte solution under the quantum electric field of a gold electrode, which is matched to the accuracy of density-functional theory. Notably, we find that the resulting atomic forces present a small error of the order of 1 meV/Å, demonstrating the great effectiveness of adopting an electron-density path in predicting the electrostatics of the system. Upon running the data-driven dynamics over about 3 ns, we observe qualitative differences in the interfacial distribution of the electrolyte with respect to the results of a classical simulation. By greatly accelerating quantum-mechanics/molecular-mechanics approaches applied to electrochemical systems, our method opens the door to nanosecond timescales in the accurate atomistic description of the electrical double layer.
Collapse
Affiliation(s)
- Andrea Grisafi
- Institut Sciences du Calcul et des Données, ISCD, Sorbonne Université, F-75005 Paris, France
| | - Mathieu Salanne
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, CNRS, F-75005 Paris, France
- Institut Universitaire de France (IUF), F-75231 Paris, France
| |
Collapse
|
8
|
Buraschi M, Horsfield AP, Cucinotta CS. Revealing Interface Polarization Effects on the Electrical Double Layer with Efficient Open Boundary Simulations under Potential Control. J Phys Chem Lett 2024; 15:4872-4879. [PMID: 38682685 PMCID: PMC11089570 DOI: 10.1021/acs.jpclett.3c03615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
A major challenge in modeling interfacial processes in electrochemical (EC) devices is performing simulations at constant potential. This requires an open-boundary description of the electrons, so that they can enter and leave the computational cell. To enable realistic modeling of EC processes under potential control we have interfaced density functional theory with the hairy probe method in the weak coupling limit (Zauchner et al. Phys. Rev. B 2018, 97, 045116). Our implementation was systematically tested using simple parallel-plate capacitor models with pristine surfaces and a single layer of adsorbed water molecules. Remarkably, our code's efficiency is comparable with a standard DFT calculation. We reveal that local field effects at the electrical double layer induced by the change of applied potential can significantly affect the energies of chemical steps in heterogeneous electrocatalysis. Our results demonstrate the importance of an explicit modeling of the applied potential in a simulation and provide an efficient tool to control this critical parameter.
Collapse
Affiliation(s)
- Margherita Buraschi
- Department
of Chemistry, Imperial College London, White City Campus, London W12 0BZ, U.K.
| | - Andrew P. Horsfield
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
- Thomas
Young Centre, London, U.K.
| | - Clotilde S. Cucinotta
- Department
of Chemistry, Imperial College London, White City Campus, London W12 0BZ, U.K.
- Thomas
Young Centre, London, U.K.
| |
Collapse
|
9
|
Serva A, Pezzotti S. S.O.S: Shape, orientation, and size tune solvation in electrocatalysis. J Chem Phys 2024; 160:094707. [PMID: 38426524 DOI: 10.1063/5.0186925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Current models to understand the reactivity of metal/aqueous interfaces in electrochemistry, e.g., volcano plots, are based on the adsorption free energies of reactants and products, which are often small hydrophobic molecules (such as in CO2 and N2 reduction). Calculations played a major role in the quantification and comprehension of these free energies in terms of the interactions that the reactive species form with the surface. However, solvation free energies also come into play in two ways: (i) by modulating the adsorption free energy together with solute-surface interactions, as the solute has to penetrate the water adlayer in contact with the surface and get partially desolvated (which costs free energy); (ii) by regulating transport across the interface, i.e., the free energy profile from the bulk to the interface, which is strongly non-monotonic due to the unique nature of metal/aqueous interfaces. Here, we use constant potential molecular dynamics to study the solvation contributions, and we uncover huge effects of the shape and orientation (on top of the already known size effect) of small hydrophobic and amphiphilic solutes on their adsorption free energy. We propose a minimal theoretical model, the S.O.S. model, that accounts for size, orientation, and shape effects. These novel aspects are rationalized by recasting the concepts at the base of the Lum-Chandler-Weeks theory of hydrophobic solvation (for small solutes in the so-called volume-dominated regime) into a layer-by-layer form, where the properties of each interfacial region close to the metal are explicitly taken into account.
Collapse
Affiliation(s)
- Alessandra Serva
- Sorbonne Université, CNRS, Physico-Chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Simone Pezzotti
- PASTEUR, Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
10
|
Scalfi L, Becker MR, Netz RR, Bocquet ML. Enhanced interfacial water dissociation on a hydrated iron porphyrin single-atom catalyst in graphene. Commun Chem 2023; 6:236. [PMID: 37919471 PMCID: PMC10622426 DOI: 10.1038/s42004-023-01027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Single Atom Catalysis (SAC) is an expanding field of heterogeneous catalysis in which single metallic atoms embedded in different materials catalyze a chemical reaction, but these new catalytic materials still lack fundamental understanding when used in electrochemical environments. Recent characterizations of non-noble metals like Fe deposited on N-doped graphitic materials have evidenced two types of Fe-N4 fourfold coordination, either of pyridine type or of porphyrin type. Here, we study these defects embedded in a graphene sheet and immersed in an explicit aqueous medium at the quantum level. While the Fe-pyridine SAC model is clear cut and widely studied, it is not the case for the Fe-porphyrin SAC that remains ill-defined, because of the necessary embedding of odd-membered rings in graphene. We first propose an atomistic model for the Fe-porphyrin SAC. Using spin-polarized ab initio molecular dynamics, we show that both Fe SACs spontaneously adsorb two interfacial water molecules from the solvent on opposite sides. Interestingly, we unveil a different catalytic reactivity of the two hydrated SAC motives: while the Fe-porphyrin defect eventually dissociates an adsorbed water molecule under a moderate external electric field, the Fe-pyridine defect does not convey water dissociation.
Collapse
Affiliation(s)
- Laura Scalfi
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Maximilian R Becker
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Marie-Laure Bocquet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
| |
Collapse
|
11
|
Fidanyan K, Liu G, Rossi M. Ab initio study of water dissociation on a charged Pd(111) surface. J Chem Phys 2023; 158:094707. [PMID: 36889966 DOI: 10.1063/5.0139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
The interactions between molecules and electrode surfaces play a key role in electrochemical processes and are a subject of extensive research, both experimental and theoretical. In this paper, we address the water dissociation reaction on a Pd(111) electrode surface, modeled as a slab embedded in an external electric field. We aim at unraveling the relationship between surface charge and zero-point energy in aiding or hindering this reaction. We calculate the energy barriers with dispersion-corrected density-functional theory and an efficient parallel implementation of the nudged-elastic-band method. We show that the lowest dissociation barrier and consequently the highest reaction rate take place when the field reaches a strength where two different geometries of the water molecule in the reactant state are equally stable. The zero-point energy contributions to this reaction, on the other hand, remain nearly constant across a wide range of electric field strengths, despite significant changes in the reactant state. Interestingly, we show that the application of electric fields that induce a negative charge on the surface can make nuclear tunneling more significant for these reactions.
Collapse
Affiliation(s)
- Karen Fidanyan
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Guoyuan Liu
- Department of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Mariana Rossi
- Department of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Ge W, Chen Y, Fan Y, Zhu Y, Liu H, Song L, Liu Z, Lian C, Jiang H, Li C. Dynamically Formed Surfactant Assembly at the Electrified Electrode-Electrolyte Interface Boosting CO 2 Electroreduction. J Am Chem Soc 2022; 144:6613-6622. [PMID: 35380035 DOI: 10.1021/jacs.2c02486] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrocatalytic reactions occur in the nanoscale space at the electrified electrode-electrolyte interface. It is well known that the electrode-electrolyte interface, also called as interfacial microenvironment, is difficult to investigate due to the interference of bulk electrolytes and its dynamic evolution in response to applied bias potential. Here, we employ electrochemical co-reduction of CO2 and H2O on commercial Ag electrodes as a model system, in conjunction with quaternary ammonium cationic surfactants as electrolyte additives. We probe bias-potential-driven dynamic response of the interfacial microenvironment as well as the mechanistic origin of catalytic selectivity. By virtue of comprehensive in situ vibrational spectroscopy, electrochemical impedance spectroscopy, and molecular dynamics simulations, it is revealed that the structure of surfactants is dynamically changed from a random distribution to a nearly ordered assembly with increasing bias potential. The nearly ordered surfactant assembly regulates the interfacial water environment by repelling isolated water and suppressing water orientation into an ordered structure as well as promotes CO2 enrichment at the electrified interface. Eventually, the formed hydrophobic-aerophilic interface microenvironment reduces the activity of water dissociation and increases the selectivity of CO2 electroreduction to CO. These results highlight the importance of regulating the interfacial microenvironment by organic additives as a means of boosting the electrochemical performance in electrosynthesis and beyond.
Collapse
Affiliation(s)
- Wangxin Ge
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxin Chen
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Fan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yihua Zhu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhen Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongliang Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Realistic Modelling of Dynamics at Nanostructured Interfaces Relevant to Heterogeneous Catalysis. Catalysts 2022. [DOI: 10.3390/catal12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The focus of this short review is directed towards investigations of the dynamics of nanostructured metallic heterogeneous catalysts and the evolution of interfaces during reaction—namely, the metal–gas, metal–liquid, and metal–support interfaces. Indeed, it is of considerable interest to know how a metal catalyst surface responds to gas or liquid adsorption under reaction conditions, and how its structure and catalytic properties evolve as a function of its interaction with the support. This short review aims to offer the reader a birds-eye view of state-of-the-art methods that enable more realistic simulation of dynamical phenomena at nanostructured interfaces by exploiting resource-efficient methods and/or the development of computational hardware and software.
Collapse
|
14
|
Ringe S, Hörmann NG, Oberhofer H, Reuter K. Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chem Rev 2021; 122:10777-10820. [PMID: 34928131 PMCID: PMC9227731 DOI: 10.1021/acs.chemrev.1c00675] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Implicit solvation
is an effective, highly coarse-grained approach
in atomic-scale simulations to account for a surrounding liquid electrolyte
on the level of a continuous polarizable medium. Originating in molecular
chemistry with finite solutes, implicit solvation techniques are now
increasingly used in the context of first-principles modeling of electrochemistry
and electrocatalysis at extended (often metallic) electrodes. The
prevalent ansatz to model the latter electrodes and the reactive surface
chemistry at them through slabs in periodic boundary condition supercells
brings its specific challenges. Foremost this concerns the difficulty
of describing the entire double layer forming at the electrified solid–liquid
interface (SLI) within supercell sizes tractable by commonly employed
density functional theory (DFT). We review liquid solvation methodology
from this specific application angle, highlighting in particular its
use in the widespread ab initio thermodynamics approach
to surface catalysis. Notably, implicit solvation can be employed
to mimic a polarization of the electrode’s electronic density
under the applied potential and the concomitant capacitive charging
of the entire double layer beyond the limitations of the employed
DFT supercell. Most critical for continuing advances of this effective
methodology for the SLI context is the lack of pertinent (experimental
or high-level theoretical) reference data needed for parametrization.
Collapse
Affiliation(s)
- Stefan Ringe
- Department of Energy Science and Engineering, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.,Energy Science & Engineering Research Center, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Nicolas G Hörmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.,Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Harald Oberhofer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany.,Chair for Theoretical Physics VII and Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| |
Collapse
|
15
|
Mikkelsen AEG, Schiøtz J, Vegge T, Jacobsen KW. Is the water/Pt(111) interface ordered at room temperature? J Chem Phys 2021; 155:224701. [PMID: 34911304 DOI: 10.1063/5.0077580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The structure of the water/Pt(111) interface has been a subject of debate over the past decades. Here, we report the results of a room temperature molecular dynamics study based on neural network potentials, which allow us to access long time scale simulations while retaining ab initio accuracy. We find that the water/Pt(111) interface is characterized by a double layer composed of a primary, strongly bound adsorption layer with a coverage of ∼0.15 ML, which is coupled to a secondary, weakly bound adsorption layer with a coverage of ∼0.58 ML. By studying the order of the primary adsorption layer, we find that there is an effective repulsion between the adsorbed water molecules, which gives rise to a dynamically changing, semi-ordered interfacial structure, where the water molecules in the primary adsorption layer are distributed homogeneously across the interface, forming frequent hydrogen bonds to water molecules in the secondary adsorption layer. We further show that these conclusions are beyond the time scales accessible to ab initio molecular dynamics.
Collapse
Affiliation(s)
- August E G Mikkelsen
- Department of Energy Conversion and Storage, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jakob Schiøtz
- CAMD, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Karsten W Jacobsen
- CAMD, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Serva A, Havenith M, Pezzotti S. The role of hydrophobic hydration in the free energy of chemical reactions at the gold/water interface: Size and position effects. J Chem Phys 2021; 155:204706. [PMID: 34852496 DOI: 10.1063/5.0069498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metal/water interfaces catalyze a large variety of chemical reactions, which often involve small hydrophobic molecules. In the present theoretical study, we show that hydrophobic hydration at the Au(100)/water interface actively contributes to the reaction free energy by up to several hundreds of meV. This occurs either in adsorption/desorption reaction steps, where the vertical distance from the surface changes in going from reactants to products, or in addition and elimination reaction steps, where two small reactants merge into a larger product and vice versa. We find that size and position effects cannot be captured by treating them as independent variables. Instead, their simultaneous evaluation allows us to map the important contributions, and we provide examples of their combinations for which interfacial reactions can be either favored or disfavored. By taking a N2 and a CO2 reduction pathway as test cases, we show that explicitly considering hydrophobic effects is important for the selectivity and rate of these relevant interfacial processes.
Collapse
Affiliation(s)
- Alessandra Serva
- Sorbonne Université, CNRS, Physico-Chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
| | - Simone Pezzotti
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|