1
|
Safronova EY, Lysova AA, Voropaeva DY, Yaroslavtsev AB. Approaches to the Modification of Perfluorosulfonic Acid Membranes. MEMBRANES 2023; 13:721. [PMID: 37623782 PMCID: PMC10456953 DOI: 10.3390/membranes13080721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Polymer ion-exchange membranes are featured in a variety of modern technologies including separation, concentration and purification of gases and liquids, chemical and electrochemical synthesis, and hydrogen power generation. In addition to transport properties, the strength, elasticity, and chemical stability of such materials are important characteristics for practical applications. Perfluorosulfonic acid (PFSA) membranes are characterized by an optimal combination of these properties. Today, one of the most well-known practical applications of PFSA membranes is the development of fuel cells. Some disadvantages of PFSA membranes, such as low conductivity at low humidity and high temperature limit their application. The approaches to optimization of properties are modification of commercial PFSA membranes and polymers by incorporation of different additive or pretreatment. This review summarizes the approaches to their modification, which will allow the creation of materials with a different set of functional properties, differing in ion transport (first of all proton conductivity) and selectivity, based on commercially available samples. These approaches include the use of different treatment techniques as well as the creation of hybrid materials containing dopant nanoparticles. Modification of the intrapore space of the membrane was shown to be a way of targeting the key functional properties of the membranes.
Collapse
Affiliation(s)
- Ekaterina Yu. Safronova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Avenue, 31, 119991 Moscow, Russia; (A.A.L.); (D.Y.V.); (A.B.Y.)
| | | | | | | |
Collapse
|
2
|
Hernández-Pérez L, Martí-Calatayud MC, Montañés MT, Pérez-Herranz V. Interplay between Forced Convection and Electroconvection during the Overlimiting Ion Transport through Anion-Exchange Membranes: A Fourier Transform Analysis of Membrane Voltage Drops. MEMBRANES 2023; 13:membranes13030363. [PMID: 36984750 PMCID: PMC10058907 DOI: 10.3390/membranes13030363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/01/2023]
Abstract
Electrodialysis (ED) applications have expanded in recent years and new modes of operation are being investigated. Operation at overlimiting currents involves the phenomenon of electroconvection, which is associated with the generation of vortices. These vortices accelerate the process of solution mixing, making it possible to increase the transport of ions across the membranes. In this work, frequency analysis is applied to investigate the interaction between different parameters on the development of electroconvection near anion-exchange membranes, which would provide a basis for the development of ED systems with favored electroconvection. Chronopotentiometric curves are registered and Fast Fourier Transform analysis is carried out to study the amplitude of the transmembrane voltage oscillations. Diverse behaviors are detected as a function of the level of forced convection and current density. The synergistic combination of forced convection and overlimiting currents leads to an increase in the signal amplitude, which is especially noticeable at frequencies around 0.1 Hz. Fast Fourier Transform analysis allows identifying, for a given system, the conditions that lead to a transition between stable and chaotic electroconvection modes.
Collapse
|
3
|
Stable hazy states by electrohydrodynamic convection of ultraviolet-treated chiral nematic liquid crystal. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Butylskii DY, Troitskiy VA, Ponomar MA, Moroz IA, Sabbatovskiy KG, Sharafan MV. Efficient Anion-Exchange Membranes with Anti-Scaling Properties Obtained by Surface Modification of Commercial Membranes Using a Polyquaternium-22. MEMBRANES 2022; 12:1065. [PMID: 36363620 PMCID: PMC9693783 DOI: 10.3390/membranes12111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 05/12/2023]
Abstract
Anion-exchange membranes modified with a polyquaternium-22 (PQ-22) polymer were studied for their use in electrodialysis. The use of PQ-22 for modification makes it possible to "replace" weakly basic amino groups on the membrane surface with quaternary amino groups. It was found that the content of quaternary amino groups in PQ-22 is higher than the content of carboxyl groups, which is the reason for the effectiveness of this polymer even when modifying Ralex AHM-PES membranes that initially contain only quaternary amino groups. In the case of membranes containing weakly basic amino groups, the PQ-22 polymer modification efficiency is even higher. The surface charge of the modified MA-41P membrane increased, while the limiting current density on the current-voltage curves increased by more than 1.5 times and the plateau length decreased by 2.5 times. These and other characteristics indicate that the rate of water splitting decreased and the electroconvective mixing at the membrane surface intensified, which was confirmed by direct visualization of vortex structures. Increasing the surface charge of the commercial MA-41P anion-exchange membrane, reducing the rate of water splitting, and enhancing electroconvection leads to mitigated scaling on its surface during electrodialysis.
Collapse
Affiliation(s)
- Dmitrii Y. Butylskii
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Vasiliy A. Troitskiy
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Maria A. Ponomar
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Ilya A. Moroz
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Konstantin G. Sabbatovskiy
- Frumkin Intstitute of Physical Chemistry and Electrochemistry RAS, 31 Leninsky Prospekt, 119071 Moscow, Russia
| | - Mikhail V. Sharafan
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| |
Collapse
|
5
|
Gil V, Oshchepkov M, Ryabova A, Trukhina M, Porozhnyy M, Tkachenko S, Pismenskaya N, Popov K. Application and Visualization of Fluorescent-Tagged Antiscalants in Electrodialysis Processing of Aqueous Solutions Prone to Gypsum Scale Deposition. MEMBRANES 2022; 12:1002. [PMID: 36295761 PMCID: PMC9607176 DOI: 10.3390/membranes12101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Membrane scaling is a serious problem in electrodialysis. A widely used technique for controlling scale deposition in water treatment technologies is the application of antiscalants (AS). The present study reports on gypsum scale inhibition in electrodialysis cell by the two novel ASs: fluorescent-tagged bisphosphonate 1-hydroxy-7-(6-methoxy-1,3-dioxo-1Hbenzo[de]isoquinolin-2(3H)-yl)heptane-1,1-diyl-bis(phosphonic acid), HEDP-F and fluorescein-tagged polyacrylate, PAA-F2 (molecular mass 4000 Da) monitored by chronopotentiometry and fluorescent microscopy. It was found that cation-exchange membrane MK-40 scaling is sufficiently reduced by both ASs, used in 10-6 mol·dm-3 concentrations. PAA-F2 at these concentrations was found to be more efficient than HEDP-F. At the same time, PAA-F2 reveals gypsum crystals' habit modification, while HEDP-F does not noticeably affect the crystal form of the deposit. The strong auto-luminescence of MK-40 hampers visualization of both PAA-F2 and HEDP-F on the membrane surface. Nevertheless, PAA-F2 is proved to localize partly on the surface of gypsum crystals as a molecular adsorption layer, and to change their crystal habit. Crystal surface coverage by PAA-F2 appears to be nonuniform. Alternatively, HEDP-F localizes on the surface of a deposit tentatively in the form of [Ca-HEDP-F]. The proposed mechanisms of action are formulated and discussed. The application of antiscalants in electrodialysis for membrane scaling mitigation is demonstrated to be very promising.
Collapse
Affiliation(s)
- Violetta Gil
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Maxim Oshchepkov
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
- Department of Chemical and Pharmaceutical Technologies and Biomedical Pharmaceuticals, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Anastasia Ryabova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, 119991 Moscow, Russia
| | - Maria Trukhina
- JSC “Fine Chemicals R&D Centre”, Krasnobogatyrskaya, Str. 42, b 1, 107258 Moscow, Russia
| | - Mikhail Porozhnyy
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Sergey Tkachenko
- Department of Chemical and Pharmaceutical Technologies and Biomedical Pharmaceuticals, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia
- JSC “Fine Chemicals R&D Centre”, Krasnobogatyrskaya, Str. 42, b 1, 107258 Moscow, Russia
| | - Natalia Pismenskaya
- Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Konstantin Popov
- JSC “Fine Chemicals R&D Centre”, Krasnobogatyrskaya, Str. 42, b 1, 107258 Moscow, Russia
| |
Collapse
|
6
|
Sessile Drop Method: Critical Analysis and Optimization for Measuring the Contact Angle of an Ion-Exchange Membrane Surface. MEMBRANES 2022; 12:membranes12080765. [PMID: 36005679 PMCID: PMC9412394 DOI: 10.3390/membranes12080765] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
The contact angle between a membrane surface and a waterdrop lying on its surface provides important information about the hydrophilicity/hydrophobicity of the membrane. This method is well-developed for solid non-swelling materials. However, ion-exchange membranes (IEMs) are gel-like solids that swell in liquids. When an IEM is exposed to air, its degree of swelling changes rapidly, making it difficult to measure the contact angle. In this paper, we examine the known experience of measuring contact angles and suggest a simple equipment that allows the membrane to remain swollen during measurements. An optimized protocol makes it possible to obtain reliable and reproducible results. Measuring parameters such as drop size, water dosing speed and others are optimized. Contact angle measurements are shown for a large number of commercial membranes. These data are supplemented with values from other surface characteristics from optical and profilometric measurements.
Collapse
|
7
|
Surface smoothening and formation of nano-channels improved mono-selectivity and antifouling property in TiO2 incorporated cation exchange membrane. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Belloň T, Slouka Z. Overlimiting convection at a heterogeneous cation-exchange membrane studied by particle image velocimetry. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|