1
|
Wang H, Kang X, Han B. Electrocatalysis in deep eutectic solvents: from fundamental properties to applications. Chem Sci 2024; 15:9949-9976. [PMID: 38966383 PMCID: PMC11220594 DOI: 10.1039/d4sc02318h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Electrocatalysis stands out as a promising avenue for synthesizing high-value products with minimal environmental footprint, aligning with the imperative for sustainable energy solutions. Deep eutectic solvents (DESs), renowned for their eco-friendly, safe, and cost-effective nature, present myriad advantages, including extensive opportunities for material innovation and utilization as reaction media in electrocatalysis. This review initiates with an exposition on the distinctive features of DESs, progressing to explore their applications as solvents in electrocatalyst synthesis and electrocatalysis. Additionally, it offers an insightful analysis of the challenges and prospects inherent in electrocatalysis within DESs. By delving into these aspects comprehensively, this review aims to furnish a nuanced understanding of DESs, thus broadening their horizons in the realm of electrocatalysis and facilitating their expanded application.
Collapse
Affiliation(s)
- Hengan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
2
|
Wu L, Qin H, Ji Z, Zhou H, Shen X, Zhu G, Yuan A. Nitrogen-Doped Carbon Dots Modified Fe-Co Sulfide Nanosheets as High-Efficiency Electrocatalysts toward Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305965. [PMID: 37702142 DOI: 10.1002/smll.202305965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/04/2023] [Indexed: 09/14/2023]
Abstract
Developing high-efficiency and stable oxygen evolution reaction (OER) electrocatalysts is an imperative requirement to produce green and clean hydrogen energy. In this work, the FeCoSy /NCDs composite with nitrogen-doped carbon dots (NCDs) modified Fe-Co sulfide (FeCoSy ) nanosheets is prepared by using a facile and mild one-pot solvothermal method. Benefiting from the low crystallinity and the synergistic effect between FeCoSy and NCDs, the optimal FeCoSy /NCDs-3 composite exhibits an overpotential of only 284 mV at 10 mA cm-2 , a small Tafel value of 52.1 mV dec-1 , and excellent electrochemical durability in alkaline solution. Remarkably, unlike ordinary metal sulfide electrocatalysts, the morphology, components, and structure of the FeCoSy /NCDs composite can be well retained after OER test. The NCDs modified FeCoSy composite with excellent electrocatalytic performance provides an effective approach to boost metal sulfide electrocatalysts for practical application.
Collapse
Affiliation(s)
- Lei Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hanli Qin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Zhenyuan Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hu Zhou
- School of Environmental and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Xiaoping Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Guoxing Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| |
Collapse
|
3
|
Patiño López JJ, Vasquez-Montoya MF, Velásquez CA, Cartagena S, Montoya JF, Martinez-Puente MA, Ramírez D, Jaramillo F. Self-Supported Spray-Coated NiFe-LDH Catalyst on a Stainless Steel Substrate for Efficient Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56547-56555. [PMID: 38006332 DOI: 10.1021/acsami.3c13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
In the quest for more efficient and cost-effective electrocatalytic systems, careful selection of catalysts and substrates plays a pivotal role. This study introduces an approach by synthesizing and depositing NiFe-layered double hydroxide (NiFe-LDH) catalysts on commercial AISI 304 substrates by using a low-temperature spray-coating technique. Through systematic investigations, the influence of processing conditions, such as the synthesis, ultrasonic power for having a stable nanoparticle's dispersion, and spray cycle optimization on the electrochemical and morphological properties of the coatings, is thoroughly explored. The results showcase exceptional catalytic performance, achieving an overpotential of 230 mV at 10 mA/cm2, with enhanced stability even at high current densities of 500 mA/cm2. The study highlights the significance of meticulous processing optimization and presents a scalable methodology that holds great potential for developing catalysts for oxygen evolution reactions (OER) and facilitates their integration into industrial processes.
Collapse
Affiliation(s)
- Juan José Patiño López
- Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 67 No. 52-21, Medellín 050010, Colombia
| | - Manuel F Vasquez-Montoya
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Carlos A Velásquez
- Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 67 No. 52-21, Medellín 050010, Colombia
| | - Santiago Cartagena
- Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 67 No. 52-21, Medellín 050010, Colombia
| | - Juan F Montoya
- Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 67 No. 52-21, Medellín 050010, Colombia
- Grupo de Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín500001, Colombia
| | | | - Daniel Ramírez
- Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 67 No. 52-21, Medellín 050010, Colombia
| | - Franklin Jaramillo
- Centro de Investigación, Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 67 No. 52-21, Medellín 050010, Colombia
| |
Collapse
|
4
|
Zhang Y, Wu J, Zhao S, Tang X, He Z, Huang K, Yu H, Zou Z, Xiong X. Self-assembled ZnO microspheres coated with carbon dot-doped CoNi LDH wrinkled films as electrochemical sensors for highly sensitive detection of hydrazine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:304-310. [PMID: 36546428 DOI: 10.1039/d2ay01698b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, a 3D surface-folded composite was prepared in situ as a hydrazine sensor by loading a hybrid film of CoNi-layered double hydroxides (LDHs) with nitrogen-doped carbon dots on self-assembled ZnO microspheres. The nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), and the electrochemical behavior of the sensors was investigated by cyclic voltammetry (CV), amperometry and electrochemical impedance spectroscopy (EIS). The results showed that ZnO microspheres with nitrogen-doped carbon dots strongly coupled with LDHs can significantly reduce the charge transfer resistance, accelerate the oxidation kinetics of hydrazine, and effectively increase the electrochemically active surface area (ECSA). The sensor achieved ultra-sensitive (13 040 μA mM-1 cm-2 (S/N = 3)) detection of hydrazine in the concentration range of 0.7 μM to 4 mM, exhibited excellent selectivity, reproducibility and high stability, and was successfully applied to the determination of hydrazine in actual environmental water samples and landfill leachate samples.
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Jiaying Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Shan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Xin Tang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Zhiyuan He
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Ke Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Huimin Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Zhirong Zou
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Xiaoli Xiong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| |
Collapse
|
5
|
Zheng Y, Deng H, Feng H, Luo G, Tu R, Zhang L. Triethanolamine-assisted synthesis of NiFe layered double hydroxide ultrathin nanosheets for efficient oxygen evolution reaction. J Colloid Interface Sci 2023; 629:610-619. [PMID: 36179580 DOI: 10.1016/j.jcis.2022.09.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
Water electrolysis is a promising technique for producing high-quality hydrogen, the application of which is impeded by the sluggish oxygen evolution reaction (OER) process. In this study, ultrathin nickel-iron layered double hydroxide (NiFe LDH) nanosheets were successfully synthesized through a facile hydrothermal reaction with the assistance of triethanolamine (TEA). Morphological and structural characterizations revealed that the presence of TEA modified the morphology of NiFe LDH, facilitated the synthesis of high-purity NiFe LDH, improved the crystallinity of NiFe LDH and resulted in a slight decrease in specific surface area. X-ray photoelectron spectroscopy (XPS) analysis demonstrated the modulation of the electronic structure engendered by the addition of TEA, with nickel and iron appearing in high valence state in the resulting NiFe LDH nanosheets. The as-prepared NiFe LDH nanosheets possessed outstanding OER activity with fast kinetics, exhibiting a low overpotential of 261 mV to achieve a current density of 10 mA cm-2 and a small Tafel slope of 32.5 mV dec-1 in 1 M KOH. The excellent OER performance and rapid OER kinetics are mainly attributed to the high-valence Ni and Fe rather than the modification in the morphology and microstructure.
Collapse
Affiliation(s)
- Yingqiu Zheng
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, PR China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Haoyuan Deng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Haoran Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Guoqiang Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, PR China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Rong Tu
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, PR China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lianmeng Zhang
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, PR China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
6
|
Zhang C, Fu Y, Gao W, Bai T, Cao T, Jin J, Xin B. Deep Eutectic Solvent-Mediated Electrocatalysts for Water Splitting. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228098. [PMID: 36432198 PMCID: PMC9694663 DOI: 10.3390/molecules27228098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
As green, safe, and cheap solvents, deep eutectic solvents (DESs) provide tremendous opportunities to open up attractive perspectives for electrocatalysis. In this review, the achievement of DESs in the preparation of catalysts for electrolytic water splitting is described in detail according to their roles combined with our own work. DESs are generally employed as green media, templates, and electrolytes. A large number of hydrogen bonds in DESs result in supramolecular structures which have the ability to shape the morphologies of nanomaterials and then tune their performance. DESs can also serve as reactive reagents of metal electrocatalysts through directly participating in synthesis. Compared with conventional heteroatom sources, they have the advantages of high safety and designability. The "all-in-one" transformation strategy is expected to realize 100% atomic transformation of reactants. The aim of this review is to offer readers a deeper understanding on preparing DES-mediated electrocatalysts with higher performance for water splitting.
Collapse
Affiliation(s)
- Chenyun Zhang
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Yongqi Fu
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Wei Gao
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Te Bai
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Tianyi Cao
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Jianjiao Jin
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Bingwei Xin
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
- Correspondence: ; Tel.: +86-13685345517
| |
Collapse
|
7
|
Ionic Liquid/Deep Eutectic Solvent-Mediated Ni-Based Catalysts and Their Application in Water Splitting Electrocatalysis. Catalysts 2022. [DOI: 10.3390/catal12080928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nickel-based electrocatalysts have been widely used to catalyze electrocatalytic water splitting. In order to obtain high-performance nickel-based electrocatalysts, using ionic liquids and deep eutectic solvents mediated their preparation has received increasing attention. Firstly, ionic liquids and deep eutectic solvents can act as media and templates for the preparation of Ni-based nanomaterials with novel structures and excellent catalytic activity. Secondly, ionic liquids and deep eutectic solvents can be employed as reactants to participate the synthesis of catalysts. Their participation not only increase the catalytic performance, but also simplify the reaction system, improve reproducibility, reduce emissions, and achieve atomic economy. On the basis of the work of our group, this review gives a detailed description of the impressive progress made concerning ionic liquids and deep eutectic solvents in the preparation of nickel-based electrocatalysts according to their roles. We also point out the challenges and opportunities in the field.
Collapse
|
8
|
Nb-doped NiFe LDH nanosheet with superhydrophilicity and superaerophobicity surface for solar cell-driven electrocatalytic water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|