1
|
He R, Luo X, Li L, Zhang Y, Peng L, Xu N, Qiao J. Grain boundary and interface interaction of metal (copper/indium) oxides to boost efficient electrocatalytic carbon dioxide reduction into syngas. J Colloid Interface Sci 2024; 658:1016-1024. [PMID: 38160124 DOI: 10.1016/j.jcis.2023.12.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Electrochemical conversion of carbon dioxide (CO2) into syngas is considered a promising approach to mitigate global warming and achieve the recycling of carbon resources. In this work, a series of core-shell metal (copper/indium) oxides with abundant grain boundaries (GBs) between the amorphous In2O3 and cubic Cu2O have been prepared by template-assisted co-precipitation method and tested for the synthesis of syngas by electrochemical CO2 reduction reaction (CO2RR). The phases of Cu2O and In2O3 are independent in bimetallic oxides and do not form any alloy oxidation phase, thus Cu2O and In2O3 can maintain their crystal structure and chemical properties in bimetallic oxides. The Cu2O and In2O3 would been completely reduced to metallic Cu and In during CO2RR. The derived copper/indium possesses the maximum FE of CO (80 %) at -0.77 V vs. reversible hydrogen electrode (RHE) and a good stability of 10 h in an H-type cell. Further applied the copper/indium oxide in the MEA reactor, the FE of CO is more than 80 % at 2.6 V and the total FE of syngas is near 100 % at all applied potentials. More importantly, the H2/CO ratios can be tuned from 1/1 to 1/4 by changing the applied voltages in MEA. Therefore, this study provides a promising strategy to promote the electrocatalytic CO2RR conversion by creating abundant grain boundaries in bimetallic oxides to regulate the ratio of H2/CO.
Collapse
Affiliation(s)
- Ruinan He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China; Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Xi Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
| | - Lulu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
| | - Yang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
| | - Luwei Peng
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China.
| | - Nengneng Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Li M, Wang J, Cong X, Sun Y, Liu Q, Miao Z, Li Z, Wang L. Confined Ni nanoparticles in N-doped carbon nanotubes for excellent pH-universal industrial-level electrocatalytic CO 2 reduction and Zn-CO 2 battery. J Colloid Interface Sci 2024; 657:738-747. [PMID: 38071822 DOI: 10.1016/j.jcis.2023.11.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 01/02/2024]
Abstract
Electrocatalytic reduction of CO2 (ECR) offers a promising approach to curbed carbon emissions and complete carbon cycles. However, the inevitable creation of carbonates and limited CO2 utilization efficiency in neutral or alkaline electrolytes result in low energy efficiency, carbon losses and its widespread commercial utilization. The advancement of CO2 reduction under acidic conditions offers a promising approach for their commercial utilization, but the inhibition of hydrogen evolution reaction and the corrosion of catalysts are still challenging. Herein, Ni nanoparticles (NPs) wrapped in N-doped carbon nanotubes (NixNC-a) are successfully prepared by a facile mixed-heating and freeze-drying method. Ni100NC-a achieves a high Faraday efficiency (FE) of near 100 % for CO under pH-universal conditions, coupled with a promising current density of CO (>100 mA cm-2). Especially in acidic conditions, Ni100NC-a exhibits an exceptional ECR performance with the high FECO of 97.4 % at -1.44 V and the turnover frequency (TOF) of 11 k h-1 at -1.74 V with a current density of 288.24 mA cm-2. This excellent performance is attributed to the synergistic effect of Ni NPs and N-doped carbon shells, which protects Ni NPs from etching, promotes CO2 adsorption and regulates local pH. Moreover, Ni100NC-a could drive the reversible Zn-CO2 battery with a high power-density of 4.68 mW cm-2 and a superior stability (98 h). This study presents a promising candidate for efficient pH-universal CO2 electroreduction and Zn-CO2 battery.
Collapse
Affiliation(s)
- Meiyin Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Jigang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China.
| | - Xuzi Cong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yinggang Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Qiang Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Zhichao Miao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Zhongfang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|
3
|
Zhao B, Huang X, Ding Y, Bi Y. Bias-Free Solar-Driven Syngas Production: A Fe 2 O 3 Photoanode Featuring Single-Atom Cobalt Integrated with a Silver-Palladium Cathode. Angew Chem Int Ed Engl 2023; 62:e202213067. [PMID: 36346191 DOI: 10.1002/anie.202213067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/11/2022]
Abstract
Photoelectrochemical syngas production from aqueous CO2 is a promising technique for carbon capture and utilization. Herein, we demonstrate the efficient and tunable syngas production by integrating a single-atom cobalt-catalyst-decorated α-Fe2 O3 photoanode with a bimetallic Ag/Pd alloy cathode. A record syngas production activity of 81.9 μmol cm-2 h-1 (CO/H2 ratio: ≈1 : 1) was achieved under artificial sunlight (AM 1.5 G) with an excellent durability. Systematic studies reveal that the Co single atoms effectively extract the holes from Fe2 O3 photoanodes and serve as active sites for promoting oxygen evolution. Simultaneously, the Pd and Ag atoms in bimetallic cathodes selectively adsorb CO2 and protons for facilitating CO production. Further incorporation with a photovoltaic, to allow solar light (>600 nm) to be utilized, yields a bias-free CO2 reduction device with solar-to-CO and solar-to-H2 conversion efficiencies up to 1.33 and 1.36 %, respectively.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaojuan Huang
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, 730000, P. R. China
| | - Yong Ding
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yingpu Bi
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, 730000, P. R. China
| |
Collapse
|
4
|
Lim J, Garcia-Esparza AT, Lee JW, Kang G, Shin S, Jeon SS, Lee H. Electrodeposited Sn-Cu@Sn dendrites for selective electrochemical CO 2 reduction to formic acid. NANOSCALE 2022; 14:9297-9303. [PMID: 35748756 DOI: 10.1039/d2nr01563c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Large-scale CO2 electrolysis can be applied to store renewable energy in chemicals. Recent developments in gas diffusion electrodes now enable a commercially relevant current density. However, the low selectivity of the CO2 reduction reaction (CO2RR) still hinders practical applications. The selectivity of the CO2RR highly depends on the electrocatalyst. Sn catalysts are considered promising cathode materials for the production of formic acid. The selectivity of Sn catalysts can be regulated by controlling their morphology or alloying them with secondary metals. Herein, we enhanced the selectivity of CO2 reduction to formic acid by synthesizing Sn-Cu@Sn dendrites that have a core@shell architecture. The Sn-Cu@Sn dendrites were prepared by a scalable electro-deposition method. The electronic structure was modified to suppress a reaction pathway for CO production on the Sn surface. Notably, the Sn shell inhibited the cathodic corrosion of Cu during the CO2RR. On a gas diffusion electrode, the Sn-Cu@Sn dendrites exhibited 84.2% faraday efficiency to formic acid for 120 h with high stability.
Collapse
Affiliation(s)
- Jinkyu Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
| | - Angel T Garcia-Esparza
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jae Won Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Gihun Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Sangyong Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Sun Seo Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|