1
|
Ismayeel M, Mehta SK, Mondal PK. Maximizing Blue Energy via Densely Grafted Soft Layers in Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39562843 DOI: 10.1021/acs.langmuir.4c03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
We investigate energy generation from salinity gradients inside a nanopore that is connected to reservoirs at both ends. We consider that the inner wall surfaces are grafted with a densely grafted polyelectrolyte layer (PEL). We developed the PEL grafting density-dependent correlation of dielectric permittivity, molecular diffusivity, and dynamic viscosity in this endeavor. Using these correlations, we employ the finite element framework to solve the equations describing the ionic and fluidic transport. We use a partially hydrolyzed polyacrylamide polymer solution, which exhibits a shear-thinning fluid, in combination with the KCl electrolyte for energy-harvesting analysis. To describe the shear-rate-dependent apparent viscosity of non-Newtonian liquid, we have employed the Carreau model. For a window of right-side reservoir concentration, we investigate the effects of ion-partitioning in conjugation with the change in PEL grafting density on the ionic field, ionic selectivity, pore current, osmotic power, energy conversion efficiency, and flow field. The findings of this endeavor demonstrate how the ion-partitioning effect lowers the screening effect and raises the electrical double layer (EDL) potential by reducing the counterions in PEL. We show that the unique distribution of the ionic field leads to a higher prediction of generated osmotic power and power density due to the ion-parting effect. Additionally, we establish that the augmentation in PEL space charge density leads to improvement in average flow velocity, osmotic power, and consequently energy conversion efficiency. We establish that the generated osmotic power density and the energy conversion efficiency become very high at the higher grafting density. In summary, inferences of this analysis are deemed pertinent in designing the nanoscale device intended for high and efficient osmotic energy generation.
Collapse
Affiliation(s)
- Md Ismayeel
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sumit Kumar Mehta
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Kumar Mondal
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
2
|
Mehta SK, Padhi P, Wongwises S, Mondal PK. Harvesting Enhanced Blue Energy in Charged Nanochannels Using Semidiluted Polyelectrolyte Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18750-18759. [PMID: 39162365 DOI: 10.1021/acs.langmuir.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Blue energy generation in nanochannels based on salinity gradients is currently the most promising method in the area of nonconventional energy production. We used a semidiluted pure sodium carboxymethylcellulose (NaCMC)-KCl aqueous solution to study the characteristics of blue energy generation within a charged nanochannel. We solve the corresponding equations for ionic transport using a numerical technique based on the finite element method. Our analysis focused on the electric double layer (EDL) potential field, open circuit current, diffuse potential, electric conductance, maximum generated pore power, and maximum energy conversion efficiency by varying concentrations of the salt in the left-side reservoir and the bulk polyelectrolyte. The results indicate that as the polyelectrolyte concentration increases, the extent of EDL overlap considerably reduces. With an increase in polyelectrolyte concentration, the open circuit current increases, while the diffuse potential reduces. It was observed that both electrical conductance and maximal pore power improve considerably with higher polyelectrolyte concentrations. Interestingly, our modeling framework demonstrates a power density substantially higher (up to 16.31 W/m2) than earlier configurations and surpasses the established commercial limit (5 W/m2). Furthermore, our findings reveal that the reservoir salt concentration significantly affects the rate of decline in the maximum energy conversion efficiency as the polyelectrolyte concentration increases. The research paves the way for the development of high-power-density devices with several practical applications.
Collapse
Affiliation(s)
- Sumit Kumar Mehta
- Microfluidics and Microscale Transport Processes LaboratoryDepartment of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok 10140, Thailand
| | - Prasenjeet Padhi
- Microfluidics and Microscale Transport Processes LaboratoryDepartment of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Somchai Wongwises
- Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok 10140, Thailand
| | - Pranab Kumar Mondal
- Microfluidics and Microscale Transport Processes LaboratoryDepartment of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok 10140, Thailand
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
3
|
Mehta SK, Deb D, Nandy A, Shen AQ, Mondal PK. Maximizing blue energy: the role of ion partitioning in nanochannel systems. Phys Chem Chem Phys 2024. [PMID: 39036903 DOI: 10.1039/d4cp01671h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
This study describes a numerical analysis on blue energy generation using a charged nanochannel with an integrated pH-sensitive polyelectrolyte layer (PEL), considering ion partitioning effects due to permittivity differences. The mathematical model for ionic and fluidic transport is solved using the finite element method, and the model validation is performed against existing theoretical and experimental results. The study investigates the influence of electrolyte concentration, permittivity ratio, and salt types (KCl, BeCl2, AlCl3) on the energy conversion process. The findings illustrate the substantial role of ion partitioning in modulating ionic concentration and potential fields, thereby affecting current profiles and energy conversion efficiencies. Remarkably, overlooking ion partitioning leads to significant overestimations of power density, highlighting the necessity of this consideration for accurate device performance predictions. This work introduces a promising configuration that achieves higher power densities, paving the way for the next generation of efficient energy-harvesting devices. The findings offer valuable insights into the development of state-of-the-art blue energy harvesting nanofluidic devices, advancing sustainable energy production.
Collapse
Affiliation(s)
- Sumit Kumar Mehta
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati - 781039, India.
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, India
| | - Debarthy Deb
- Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar - 788010, India
| | - Adhiraj Nandy
- Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar - 788010, India
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Pranab Kumar Mondal
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati - 781039, India.
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, India
| |
Collapse
|
4
|
Tang J, Wang Y, Yang H, Zhang Q, Wang C, Li L, Zheng Z, Jin Y, Wang H, Gu Y, Zuo T. All-natural 2D nanofluidics as highly-efficient osmotic energy generators. Nat Commun 2024; 15:3649. [PMID: 38684671 PMCID: PMC11058229 DOI: 10.1038/s41467-024-47915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Two-dimensional nanofluidics based on naturally abundant clay are good candidates for harvesting osmotic energy between the sea and river from the perspective of commercialization and environmental sustainability. However, clay-based nanofluidics outputting long-term considerable osmotic power remains extremely challenging to achieve due to the lack of surface charge and mechanical strength. Here, a two-dimensional all-natural nanofluidic (2D-NNF) is developed as a robust and highly efficient osmotic energy generator based on an interlocking configuration of stacked montmorillonite nanosheets (from natural clay) and their intercalated cellulose nanofibers (from natural wood). The generated nano-confined interlamellar channels with abundant surface and space negative charges facilitate selective and fast hopping transport of cations in the 2D-NNF. This contributes to an osmotic power output of ~8.61 W m-2 by mixing artificial seawater and river water, higher than other reported state-of-the-art 2D nanofluidics. According to detailed life cycle assessments (LCA), the 2D-NNF demonstrates great advantages in resource consumption (1/14), greenhouse gas emissions (1/9), and production costs (1/13) compared with the mainstream 2D nanofluidics, promising good sustainability for large-scale and highly-efficient osmotic power generation.
Collapse
Affiliation(s)
- Jiadong Tang
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Yun Wang
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Hongyang Yang
- Institute of Circular Economy, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Qianqian Zhang
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Ce Wang
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Leyuan Li
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Zilong Zheng
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Yuhong Jin
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Hao Wang
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Yifan Gu
- Institute of Circular Economy, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Tieyong Zuo
- Institute of Circular Economy, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
5
|
Kumar A, Bakli C, Chakraborty S. Ion-Solvent Interactions under Confinement Hold the Key to Tuning the DNA Translocation Speeds in Polyelectrolyte-Functionalized Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7300-7309. [PMID: 38536237 DOI: 10.1021/acs.langmuir.3c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
DNA sequencing and sensing using nanopore technology delves critically into the alterations in the measurable electrical signal as single-stranded DNA is drawn through a tiny passage. To make such precise measurements, however, slowing down the DNA in the tightly confined passage is a key requirement, which may be achieved by grafting the nanopore walls with a polyelectrolyte layer (PEL). This soft functional layer at the wall, under an off-design condition, however, may block the DNA passage completely, leading to the complete loss of output signal from the nanobio sensor. Whereas theoretical postulates have previously been put forward to explain the essential physics of DNA translocation in nanopores, these have turned out to be somewhat inadequate when confronted with the experimental findings on functionalized nanopores, including the prediction of the events of complete signal losses. Circumventing these constraints, herein we bring out a possible decisive role of the interplay between the inevitable variabilities in the ionic distribution along the nanopore axis due to its finite length as opposed to its idealized "infinite" limit as well as the differential permittivity of PEL and bulk solution that cannot be captured by the commonly used one-dimensional variant of the electrical double layer theory. Our analysis, for the first time, captures variations in the ionic concentration distribution across multidimensional physical space and delineates its impact on the DNA translocation characteristics that have hitherto remained unaddressed. Our results reveal possible complete blockages of DNA translocation as influenced by less-than-threshold permittivity values or greater-than-threshold grafting densities of the PEL. In addition, electrohydrodynamic blocking is witnessed due to the ion-selective nature of the nanopore at low ionic concentrations. Hence, our study establishes a functionally active regime over which the PEL layer in a finite-length nanopore facilitates controllable DNA translocation, enabling successful sequencing and sensing through the explicit modulation of translocation speed.
Collapse
Affiliation(s)
- Avinash Kumar
- Thermofluidics and Nanotechnology for Sustainable Energy Systems Laboratory, School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Chirodeep Bakli
- Thermofluidics and Nanotechnology for Sustainable Energy Systems Laboratory, School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|
6
|
Khatibi M, Ashrafizadeh SN. Ion Transport in Intelligent Nanochannels: A Comparative Analysis of the Role of Electric Field. Anal Chem 2023. [PMID: 38019778 DOI: 10.1021/acs.analchem.3c03809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
This research delves into investigating ion transport behavior within nanochannels, enhanced through modification with a negatively charged polyelectrolyte layer (PEL), aimed at achieving superior control. The study examines two types of electric fields─direct current and alternating current with square, sinusoidal, triangular, and sawtooth waveforms─to understand their impact on ion transport. Furthermore, the study compares symmetric (cylindrical) and asymmetric (conical) nanochannel geometries to assess the influence of overlapping electrical double layers (EDLs) in generating specific electrokinetic behaviors such as ionic current rectification (ICR) and ion selectivity. The research employs the finite element method to solve the coupled Poisson-Nernst-Planck and Navier-Stokes equations under unsteady-state conditions. By considering factors such as electrolyte concentration, soft layer charge density, and electric field type, the study evaluates ion transport performance in charged nanochannels, investigating effects on concentration polarization, electroosmotic flow (EOF), ion current, rectification, and ion selectivity. Notably, the study accounts for ion partitioning between the PEL and electrolyte to simulate real conditions. Findings reveal that conical nanochannels, due to improved EDL overlap, significantly enhance ion transport and related characteristics compared to cylindrical ones. For instance, under ηε = ηD = 0.8, ημ = 2, C0 = 20 mM, and NPEL/NA = 80 mol m-3 conditions, the average EOF for conical and cylindrical geometries is 0.1 and 0.008 m/s, respectively. Additionally, the study explores ion selectivity and rectification based on the electric field type, unveiling the potential of nanochannels as ion gates or diodes. In cylindrical nanochannels, the ICR remains at unity, with lower ion selectivity across waveforms compared to conical channels. Furthermore, rectification and ion selectivity trends are identified as Rf,square > Rf,DC > Rf,triangular > Rf,sinusoidal > Rf,sawtooth and Ssawtooth > Ssinusoidal > Striangular > SDC > Ssquare for conical nanochannels. Our study of ion transport control in nanochannels, guided by tailored electric fields and unique geometries, offers versatile applications in the field of Analytical Chemistry. This includes enhanced sample separation, controlled drug delivery, optimized pharmaceutical analysis, and the development of advanced biosensing technologies for precise chemical analysis and detection. These applications highlight the diverse analytical contributions of our methodology, providing innovative solutions to challenges in chemical analysis and biosensing.
Collapse
Affiliation(s)
- Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
7
|
Heydari A, Khatibi M, Ashrafizadeh SN. Smart nanochannels: tailoring ion transport properties through variation in nanochannel geometry. Phys Chem Chem Phys 2023; 25:26716-26736. [PMID: 37779455 DOI: 10.1039/d3cp03768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This research explores ion transport behavior and functionality in a hybrid nanochannel that consists of two conical and cylindrical parts. The numerical investigation focuses on analyzing the length of each part in the nanochannel. The nanochannels are hybrid cavities embedded in a membrane, where the size of the conical part varies as equal to, larger than, or smaller than the cylindrical part. The nanochannel is coated with a polyelectrolyte layer that exhibits a dense charge density distribution. The charge density of the soft layer is described using the soft step distribution function. We study the electroosmotic flow, ionic current, rectification, and selectivity of the nanochannel versus bulk electrolyte concentration, the charge density of the polyelectrolyte layer, and decay length, while considering the effect of ionic partitioning. The steady-state Poisson-Nernst-Planck and Navier-Stokes equations are solved using the finite element method. The findings reveal that the nanochannel with a more extensive conical section demonstrates increased rectification, with the rectification factor rising from 1.4 to 2 at a bulk concentration of 100 mM. Additionally, the nanochannel with a longer cylindrical part exhibits improved selectivity under negative voltage conditions, while positive voltage introduces a different situation. The nanochannel with equal cylindrical and conical parts significantly affects conductivity by modifying the charge density in the soft layer, resulting in a 3.125-fold increase in conductivity under positive voltage when the charge density in the polyelectrolyte layer is raised from 25 to 100 mol m-3. This research focuses on creating intelligent nanochannels by controlling mass concentration, charge density, and collapse length, improving system performance, and optimizing properties. It also offers valuable insights into ion transport mechanisms in nanochannel systems, advancing our understanding in this field.
Collapse
Affiliation(s)
- Amirhossein Heydari
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| |
Collapse
|
8
|
Khatibi M, Dartoomi H, Ashrafizadeh SN. Layer-by-Layer Nanofluidic Membranes for Promoting Blue Energy Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13717-13734. [PMID: 37702658 DOI: 10.1021/acs.langmuir.3c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Access to and use of energy resources are now crucial components of modern human existence thanks to the exponential growth of technology. Traditional energy sources provide significant challenges, such as pollution, scarcity, and excessive prices. As a result, there is more need than ever before to replace depleting resources with brand-new, reliable, and environmentally friendly ones. With the aid of reverse electrodialysis, the salinity gradient between rivers and seawater as a clean supply with easy and infinite availability is a viable choice for energy generation. The development of nanofluidic-based reverse electrodialysis (NRED) as a novel high-efficiency technology is attributable to the progress of nanoscience. However, understanding the predominant mechanisms of this process at the nanoscale is necessary to develop and disseminate this technology. One viable option to gain insight into these systems while saving expenses is to employ simulation tools. In this study, we looked at how a layer-by-layer (LBL) soft layer influences ion transport and energy production in charged nanochannels. We solved the steady-state Poisson-Nernst-Planck (PNP) and Navier-Stokes (NS) equations for three different types of nanochannels with a trumpet geometry, where the narrow part is covered with a built-up LbL soft layer and the rest is a hard wall with a surface charge density of σ = -10, 0, or +10 mC/m2. The findings show that in type (I) nanochannels, at NPEL/NA = 100 mol/m3 and pH = 7, the maximum power output rises 675-fold as the concentration ratio rises from 10 to 1000. The results of this study can aid in a better understanding of energy harvesting processes using nanofluidic-based reverse electrodialysis in order to identify optimal conditions for the design of an intelligent route with great controllability and minimal pollution.
Collapse
Affiliation(s)
- Mahdi Khatibi
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Hossein Dartoomi
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
9
|
Mehta SK, Raj AR, Mondal PK. Salinity Gradient-Induced Power Generation in Nanochannels: The Role of pH-Sensitive Polyelectrolyte Layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12302-12312. [PMID: 37471700 DOI: 10.1021/acs.langmuir.3c01236] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
By varying the pH values (pHR) and types of salt solution, we investigate the salinity gradient-induced electrical and mechanical flow energies inside a reservoir-connected charged nanochannel with a grafted pH-sensitive polyelectrolyte layer (PEL) on the inner surfaces. The aqueous solutions of KCl, LiCl, BaCl2, BeCl2, AlCl3, and Co(en)3Cl3 salts are used as the working fluid in the current investigation. We examine the associated ionic transport and flow field, aiming to understand the underlying physics behind the generation of electrical and hydraulic energy through alterations in pHR and types of salt solution. Our results reveal that the PEL space charge density decreases with increasing pHR at lower values, while it remains almost insensitive to higher pHR values. The electrical conductance and maximum pore power of the Co(en)3Cl3 solution are significantly higher compared to salts with monovalent and divalent cations. Furthermore, the magnitude of these two parameters decreases with lower pHR and becomes insensitive to higher pHR values. The results illustrate that the maximum electrical energy conversion efficiency enhances with pHR, reaching its highest level for the Co(en)3Cl3 solution. We expect that the findings of the current work will have a significant bearing on the design and development of a state-of-the-art salinity gradient-based energy convertor as a potential candidate for renewable energy sources.
Collapse
Affiliation(s)
- Sumit Kumar Mehta
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ayush Rathour Raj
- Department of Electronics and Communication Engineering, National Institute of Technology, Jote 791113, Arunachal Pradesh, India
| | - Pranab Kumar Mondal
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
10
|
Effect of Surface Charge Gradient on the Concentration Difference Driven Energy Conversion in Nanochannel. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Dartoomi H, Khatibi M, Ashrafizadeh SN. Enhanced Ionic Current Rectification through Innovative Integration of Polyelectrolyte Bilayers and Charged-Wall Smart Nanochannels. Anal Chem 2023; 95:1522-1531. [PMID: 36537870 DOI: 10.1021/acs.analchem.2c04559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tools utilized by humans continue to shrink and speed up. Lab-on-a-chip (LOC) is one of the most recent techniques for decreasing the size of chemical systems. Today, LOCs have made substantial strides in developing nanomaterial fabrication techniques. Controlling and regulating the fluid and ion mobility in these systems is crucial. Layer-by-layer (LBL) soft layers are one of the most effective strategies for controlling fluid flow in channels. In light of the present constraints for developing these systems and the high expense of experimental investigations, it is vital to employ modeling to minimize costs and comprehend their underlying ideas and operations. In this study, we examined the influence of the LBL soft layer's presence in the charged nanochannels on the ion transport parameters. To examine the effect of the coating length of the LBL soft layer, we first examined three lengths of coating: one with a length greater than half (type (I)), one with a length equal to half (type (II)), and one with a length less than half (type (III)) of the nanochannel length. Then, by solving Poisson-Nernst-Planck and Navier-Stokes equations, we determined the influences of pH, soft layer charge density (NPEL/NA), bulk concentration (C0), and hard surface charge density (σ) on the ionic current rectification (Rf) and selectivity (S) of the nanochannel. The maximum rectification of 30.65 was achieved using a nanochannel of type (III) and σ = +10 mC/m2. The current results demonstrate a promising hybrid architecture consisting of an LBL soft layer and a smart charged nanochannel for enhanced rectification.
Collapse
Affiliation(s)
- Hossein Dartoomi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| |
Collapse
|
12
|
Dartoomi H, Khatibi M, Ashrafizadeh SN. Importance of nanochannels shape on blue energy generation in soft nanochannels. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Seifollahi Z, Ashrafizadeh SN. Effect of charge density distribution of polyelectrolyte layer on electroosmotic flow and ion selectivity in a conical soft nanochannel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Alinezhad A, Alinezhad A. Influence of location junction on ion transfer behavior in conical nanopores with bipolar polyelectrolyte brushes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Karimzadeh M, Khatibi M, Ashrafizadeh SN, Mondal PK. Blue energy generation by the temperature-dependent properties in funnel-shaped soft nanochannels. Phys Chem Chem Phys 2022; 24:20303-20317. [PMID: 35979759 DOI: 10.1039/d2cp01015a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Salinity energy generation (SEG) studies have only been done under isothermal conditions at ambient temperature. The production of salinity energy can be improved under non-isothermal conditions, albeit preserving the energy efficiency. In the current study, the effects of gradients of temperature and concentration on the salinity energy generation process were examined simultaneously. Based on the temperature-dependent properties resulting from both temperature and concentration gradients, a numerical study was carried out to determine the maximum efficiency of salinity energy generation in funnel-shaped soft nanochannels. It was presumed that a dense layer of negative charge, called a polyelectrolyte layer (PEL), is coated on the walls of the nanochannels. Co-current and counter-current modes were used to obtain temperature and concentration gradients. Under steady-state conditions, the Poisson-Nernst-Planck, Stokes-Brinkman, and energy equations were numerically solved using equivalent approaches. The results revealed that by increasing the temperature and concentration ratios in both co-current and counter-current modes of operation, the salinity energy generation increased appreciably. The salinity energy generation increased from 30 to 80 pW upon increasing the temperature ratio from 1 to 8 at a constant concentration ratio of 1000 in counter-current mode. As verified from this analysis, low-grade heat sources (<100 °C) provide considerable energy conversion in PEL grafted nanofluidic confinement when placed between electrolyte solutions of different temperatures.
Collapse
Affiliation(s)
- Mohammad Karimzadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Pranab Kumar Mondal
- Microfluidics and Microscale Transport Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
16
|
Dartoomi H, Khatibi M, Ashrafizadeh SN. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Energy Harvesting: Roles of Nanochannel Geometry and Bipolar Soft Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10313-10330. [PMID: 35952366 DOI: 10.1021/acs.langmuir.2c01790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Researchers are looking for new, clean, and accessible sources of energy due to rising global warming caused by the usage of fossil fuels and the irreversible harm that this does to the environment. Water salinity is one of the newest and most accessible renewable energy sources, which has sparked a lot of interest. Reverse electrodialysis (RED) has been utilized in the past to turn saline water into electricity. NRED, a reverse electrodialysis method utilizing nanofluidics, has gained popularity as nanoscale research advances. Developing and evaluating NRED systems is time-consuming and expensive due to the method's novelty; thus, modeling is required to identify the best locations for implementation and to comprehend its workings. In this work, we examined the influence of bipolar soft layer and nanochannel geometry on ion transfer and power production simultaneously. To achieve this, the two trumpet and cigarette geometries were coated with a bipolar soft layer so that both negative (type (I)) and positive (type (II)) charges could be positioned in the nanochannel's small aperture. After that, at steady state conditions, the Poisson-Nernst-Planck (PNP) and Navier-Stokes (NS) equations were solved concurrently. The findings revealed that altering the nanochannel coating from type (I) to type (II) alters the channel's selectivity from cations to anions. An approximately 22-fold improvement in energy conversion efficiency was achieved by raising the concentration ratio from 10 to 100 for the type (I) trumpet nanochannel. Type (I) cigarette geometry is advised for maximum power output at low and medium concentration ratios, whereas type (I) trumpet geometry is recommended for the maximum power production at high concentration ratios.
Collapse
Affiliation(s)
- Hossein Dartoomi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
17
|
Seifollahi Z, Ashrafizadeh SN. Ionic-size dependent electroosmotic flow in ion-selective biomimetic nanochannels. Colloids Surf B Biointerfaces 2022; 216:112545. [PMID: 35561637 DOI: 10.1016/j.colsurfb.2022.112545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/16/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Electrokinetic phenomena, especially electroosmosis in ion-selective environments, play a key role in many systems, from ion-selective nanopores to cellular processes. In this paper, the impact of ionic size on the electroosmotic flow through an ion-selective soft slit nanochannel is analytically studied. Meanwhile, the modified Poisson-Boltzmann and the modified Navier-Stokes equations were used for modeling the electrostatics and the electrohydrodynamics of the problem, respectively, and the derived equations were solved by linearizing method. The results reveal the importance of considering the effect of ionic size in the calculation, as the steric effects, especially at high charge densities of polyelectrolytes (PELs), dramatically alter both the ions arrangement and the electric potential; and amplify the electroosmotic flow. Considering Debye-Huckel parameters of 4 and 10 for the electrolyte layer and the PEL, respectively, we demonstrate that the dimensionless electroosmotic velocity in a soft nanochannel having a dimensionless soft layer thickness of 0.2, from 3.2 by ignoring the steric effect, can reach the value of 6 by considering the steric effect of ν=0.3.
Collapse
Affiliation(s)
- Zahra Seifollahi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| |
Collapse
|
18
|
A simulation study of an electro-membrane extraction for enhancement of the ion transport via tailoring the electrostatic properties. Sci Rep 2022; 12:12170. [PMID: 35842540 PMCID: PMC9288467 DOI: 10.1038/s41598-022-16482-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
Membrane technology with advantages such as reduced energy consumption due to no phase change, low volume and high mass transfer, high separation efficiency for solution solutions, straightforward design of membranes, and ease of use on industrial scales are different from other separation methods. There are various methods such as liquid-liquid extraction, adsorption, precipitation, and membrane processes to separate contaminants from an aqueous solution. The liquid membrane technique provides a practical and straightforward separation method for metal ions as an advanced solvent extraction technique. Stabilized liquid membranes require less solvent consumption, lower cost, and more effortless mass transfer due to their thinner thickness than other liquid membrane techniques. The influence of the electrostatic properties, derived from the electrical field, on the ionic transport rate and extraction recovery, in flat sheet supported liquid membrane (FSLM) and electro flat sheet supported liquid membrane (EFSLM) were numerically investigated. Both FSLM and EFSLM modes of operation, in terms of implementing electrostatic, were considered. Through adopting a numerical approach, Poisson-Nernst-Planck, and Navier-Stokes equations were solved at unsteady-state conditions by considering different values of permittivity, diffusivity, and viscosity for the presence of electrical force and stirrer, respectively. The most important result of this study is that under similar conditions, by increasing the applied voltage, the extraction recovery increased. For instance, at EFSLM mode, by increasing the applied voltage from [Formula: see text] to [Formula: see text], the extraction recovery increased from [Formula: see text] to [Formula: see text]. Furthermore, it was also observed that the presence of nanoparticles has significant effects on the performance of the SLM system.
Collapse
|
19
|
Li C, Liu Z, Qiao N, Feng Z, Tian ZQ. The electroviscous effect in nanochannels with overlapping electric double layers considering the height size effect on surface charge. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
A simulation study of an applied approach to enhance drug recovery through electromembrane extraction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Alinezhad A, Khatibi M, Nezameddin Ashrafizadeh S. Impact of asymmetry soft layers and ion partitioning on ionic current rectification in bipolar nanochannels. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Liu Z, Liu X, Wang Y, Yang D, Li C. Ion current rectification in asymmetric charged bilayer nanochannels. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Karimzadeh M, Seifollahi Z, Khatibi M, Ashrafizadeh SN. Impacts of the shape of soft nanochannels on their ion selectivity and current rectification. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|