1
|
He W, Li J, Zhang Y, Yang J, Zeng T, Yang N. High-Performance Supercapacitors Using Hierarchical And Sulfur-Doped Trimetallic NiCo/NiMn Layered Double Hydroxides. SMALL METHODS 2025; 9:e2301167. [PMID: 38009500 DOI: 10.1002/smtd.202301167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Indexed: 11/29/2023]
Abstract
A supercapacitor features high power density and long cycling life. However, its energy density is low. To ensemble a supercapacitor with high power- and energy-densities, the applied capacitor electrodes play the key roles. Herein, a high-performance capacitive electrode is designed and grown on a flexible carbon cloth (CC) substrate via a hydrothermal reaction and a subsequent ion exchange sulfuration process. It has a 3D heterostructure, consisting of sulfur-doped NiMn-layered double hydroxide (LDH) nanosheets (NMLS) and sulfur-doped NiCo-LDH nanowires (NCLS). The electrode with sheet-shaped NMLS and wire-shaped NCLS on their top (NMLS@NCLS/CC) increases the available surface area, providing more pseudocapacitive sites. It exhibits a gravimetric capacity of 555.2 C g-1 at a current density of 1 A g-1, the retention rate of 75.1% when the current density reaches up to 20 A g-1, as well as superior cyclic stability. The assembled asymmetric supercapacitor that is composed of a NMLS@NCLS/CC positive electrode and a sulfurized activated carbon negative electrode presents a maximum energy density of 24.2 Wh kg-1 and a maximum power density of 16000 W kg-1. In this study, a facile strategy for designing hierarchical LDH materials is demonstrated as well as their applications in advanced energy storage systems.
Collapse
Affiliation(s)
- Weikang He
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Jingjing Li
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Yuanyuan Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Juan Yang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Ting Zeng
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Nianjun Yang
- Department of Chemistry & IMO-IMOMEC, Hasselt University, 3590, Diepenbeek, Belgium
| |
Collapse
|
2
|
Chen P, Wu Y, Guo X, Wang M, Yu C, Jiang H, Zhou W, Wu G, Yan J. Rational Design of FeCo-S/Ni 2P/NF Heterojunction as a Robust Electrocatalyst for Water Splitting. Inorg Chem 2024; 63:5520-5529. [PMID: 38488014 DOI: 10.1021/acs.inorgchem.3c04480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The rational design of nonnoble-metal-based catalysts with high electroactivity and long-term stability, featuring controllable active sites, remains a significant challenge for achieving effective water electrolysis. Herein, a heterogeneous catalyst with a FeCo-S and Ni2P heterostructure (denoted FeCo-S/Ni2P/NF) grown on nickel foam (NF) was synthesized by a solvothermal method and low-temperature phosphorization. The FeCo-S/Ni2P/NF catalyst shows excellent electrocatalytic performance and stability in alkaline solution. The FeCo-S/Ni2P/NF catalyst demonstrates low overpotentials (η) for both the hydrogen evolution reaction (HER) (49 mV@10 mA cm-2) and the oxygen evolution reaction (OER) (279 mV@100 mA cm-2). Assembling the FeCo-S/Ni2P/NF catalyst as both cathode and anode in an electrolytic cell for overall water splitting (OWS) needs an ultralow cell voltage of 1.57 V to attain a current density (CD) of 300 mA cm-2. Furthermore, it demonstrates excellent durability, significantly outperforming the commercial Pt/C∥IrO2 system. The results of experiments indicate that the heterostructure and synergistic effect of FeCo-S and Ni2P can significantly enhance conductivity, facilitate mass/ion transport and gas evolution, and expose more active sites, thereby improving the catalytic activity of the electrocatalyst for the OWS. This study provides a rational approach for the development of commercially promising dual-functional electrocatalysts.
Collapse
Affiliation(s)
- Pinghua Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
- Institute of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
- National-local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang 330063, PR China
| | - Yirou Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
- Institute of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
- National-local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang 330063, PR China
| | - Xuan Guo
- Jiangxi College of Applied Technology, Ganzhou 341000, PR China
| | - Mengxue Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
- Institute of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
- National-local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang 330063, PR China
| | - Cong Yu
- Institute of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Hualin Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
- Institute of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
- National-local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang 330063, PR China
| | - Weiqiang Zhou
- Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Guanghui Wu
- Institute of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jianan Yan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
- Institute of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
- National-local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang 330063, PR China
| |
Collapse
|
3
|
Kim M, Min K, Ko D, Seong H, Eun Shim S, Baeck SH. Regulating the electronic structure of Ni 2P by one-step Co, N dual-doping for boosting electrocatalytic performance toward oxygen evolution reaction and urea oxidation reaction. J Colloid Interface Sci 2023; 650:1851-1861. [PMID: 37515975 DOI: 10.1016/j.jcis.2023.07.158] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
The development of efficient bifunctional electrocatalysts for oxygen evolution reaction (OER) and urea oxidation reaction (UOR) is critical for hydrogen production and wastewater purification. In this work, we propose a facile synthetic method for Co and N dual-doped Ni2P directly grown on Ni foam (Co-Ni2P-N/NF) using hydrothermal and annealing process. Simultaneous Co and N dual-doping into Ni2P not only modifies the surface electronic structure, but also generates a multitude of active sites with high valence states, which are beneficial for improving electrocatalytic kinetics for both OER and UOR. As a result, the Co-Ni2P-N/NF catalyst exhibits a low overpotential of 329 mV to deliver a current density of 100 mA cm-2 for OER in alkaline solution, which is much lower than that of the state-of-the-art RuO2 electrocatalyst. In addition, the urea-assisted water oxidation process exhibits a significant reduction of approximately 163 mV in the required potential at 100 mA cm-2 compared to that of the OER, which highlights the remarkable potential of the prepared Co-Ni2P-N/NF electrocatalyst in facilitating the purification of wastewater and hydrogen production with significantly lower energy consumption.
Collapse
Affiliation(s)
- Minjung Kim
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy Materials and Process, Inha University, Incheon 22212, Republic of Korea
| | - Kyeongseok Min
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy Materials and Process, Inha University, Incheon 22212, Republic of Korea
| | - Dasol Ko
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy Materials and Process, Inha University, Incheon 22212, Republic of Korea
| | - Haemin Seong
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy Materials and Process, Inha University, Incheon 22212, Republic of Korea
| | - Sang Eun Shim
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy Materials and Process, Inha University, Incheon 22212, Republic of Korea
| | - Sung-Hyeon Baeck
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy Materials and Process, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
4
|
Praveen AE, Mishra V, Ganguli S, Chandrasekar A, Mahalingam V. Phosphorus-Induced One-Step Synthesis of NiCo 2S 4 Electrode Material for Efficient Hydrazine-Assisted Hydrogen Production. Inorg Chem 2023; 62:16149-16160. [PMID: 37729545 DOI: 10.1021/acs.inorgchem.3c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Rational control of the reaction parameters is highly important for synthesizing active electrocatalysts. NiCo2S4 is an excellent spinel-based electrocatalyst that is usually prepared through a two-step synthesis. Herein, a one-step hydrothermal route is reported to synthesize P-incorporated NiCo2S4. We discovered that the inclusion of P caused formation of the NiCo2S4 phase in a single step. Computational studies were performed to comprehend the mechanism of phase formation and to examine the energetics of lattice formation. Upon incorporation of the optimum amount of P, the stability of the NiCo2S4 lattice was found to increase steadily. In addition, the Bader charges on both the metal atoms Co and Ni in NiCo2S4 and P-incorporated NiCo2S4 were compared. The results show that replacing S with the optimal amount of P leads to a reduction in charge on both metal atoms, which can contribute to a more stable lattice formation. Further, the electrochemical performance of the as-synthesized materials was evaluated. Among the as-synthesized nickel cobalt sulfides, P-incorporated NiCo2S4 exhibits excellent activity toward hydrazine oxidation with an onset potential of 0.15 V vs RHE without the assistance of electrochemically active substrates like Ni or Co foam. In addition to the facile synthesis method, P-incorporated NiCo2S4 requires a very low cell voltage of 0.24 V to attain a current density of 10 mA cm-2 for hydrazine-assisted hydrogen production in a two-electrode cell. The free energy profile of the stepwise HzOR has been investigated in detail. The computational results suggested that HzOR on P-incorporated NiCo2S4 was more feasible than HzOR on NiCo2S4, and these findings corroborate the experimental evidence.
Collapse
Affiliation(s)
- Athma E Praveen
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Viplove Mishra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sagar Ganguli
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
- Ångström Laboratory, Department of Chemistry, Uppsala University, SE-75120 Uppsala, Sweden
| | - Aditi Chandrasekar
- School of Arts and Sciences, Azim Premji University, Bangalore 562125, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
5
|
Min K, Kim H, Ku B, Na R, Lee J, Baeck SH. Defect-rich Fe-doped Ni2P microflower with phosphorus vacancies as a high-performance electrocatalyst for oxygen evolution reaction. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
6
|
Cao J, Fu Y, Wang Y, Wang J, Zheng Y, Pan J, Li C. Hierarchical structure of amorphous Co–P nanosheets decorated crystalline NiCo2S4 nanorods as a bifunctional catalyst for electrocatalytic water splitting. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Li J, Pan J, Yin W, Cai Y, Huang H, He Y, Gong G, Yuan Y, Fan C, Zhang Q, Wang L. Recent status and advanced progress of tip effect induced by micro-nanostructure. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
The design and synthesis of Fe doped flower-like NiS/NiS2 catalyst with enhanced oxygen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Zhou C, Yao Z, Wei B, Li W, Li Z, Tao X, Zhou J. Facile synthesis of ZIF-67 derived dodecahedral C/NiCO 2S 4 with broadband microwave absorption performance. NANOSCALE 2022; 14:10375-10388. [PMID: 35797985 DOI: 10.1039/d2nr02490j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The increasing hazard of electromagnetic radiation prompts people to pursue absorbing materials with better performance. However, absorbing materials with a single loss mechanism usually is unable to obtain better absorbing performance due to low impedance matching or high filling ratio. Therefore, this work proposes a C/NiCo2S4 (CNCS) material with both dielectric loss/magnetic loss to achieve efficient absorption of electromagnetic waves. The simple preparation of CNCS materials was achieved through the etching of the ZIF-67 template by nickel nitrate and the subsequent hydrothermal vulcanization process. Its unique prismatic dodecahedron hollow structure promotes multiple scattering of electromagnetic waves. The attachment of the magnetic NiCo2S4 particles on the surface of the carbon template further promotes the interface polarization and dipole polarization, which is equivalent to the formation of a resistance-rich microcircuit and enhances the effect of the conductance loss on electromagnetic waves. At 2-18 GHz, the CNCS-2 with 30% paraffin addition achieves an effective bandwidth of 5.54 GHz at a matching thickness of 1.7 mm, and has a maximum reflection loss of -36.44 dB at 1.5 mm. By adjusting the thickness of the material matching layer (1-3 mm), an effective bandwidth of up to 13.48 GHz can be achieved, perfectly covering the X-band and Ku-band. Based on the simple preparation process of the material, the special hollow structure and the multiple loss mechanisms for electromagnetic waves, we believe that CNCS can become a strong competitor for high-efficiency broadband absorbers.
Collapse
Affiliation(s)
- Congyu Zhou
- College of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China.
| | - Zhengjun Yao
- College of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China.
| | - Bo Wei
- College of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China.
| | - Wenying Li
- College of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China.
| | - Zhejia Li
- College of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China.
| | - Xuewei Tao
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Jintang Zhou
- College of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China.
| |
Collapse
|
10
|
Yu H, Yin J, Tan W, Lv J, Xie S, Yang J, Wang J, Zhang C, Shen X, Zhao M, Wang C, Zhang M, He G, Yang L. Co8FeS8/Fe7S8@N-doped porous carbons as highly efficient and stable electrocatalysts for oxygen evolution reaction. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|