1
|
Favero S, Chen R, Cheung J, Higgins L, Luo H, Wang M, Barrio J, Titirici MM, Bagger A, Stephens IEL. Same FeN4 Active Site, Different Activity: How Redox Peaks Control Oxygen Reduction on Fe Macrocycles. ACS ELECTROCHEMISTRY 2025; 1:617-632. [PMID: 40331011 PMCID: PMC12051206 DOI: 10.1021/acselectrochem.4c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 05/08/2025]
Abstract
Macrocycles show high activity for the electrochemical reduction of oxygen in alkaline media. However, even macrocycles with the same metal centers and MN4 active site can vary significantly in activity and selectivity, and to this date, a quantitative insight into the cause of these staggering differences has not been unambiguously reached. These macrocycles form a fundamental platform, similarly to platinum alloys for metal ORR catalyst, to unravel fundamental properties of FeNx catalysts. In this manuscript, we present a systematic study of several macrocycles, with varying active site motif and ligands, using electrochemical techniques, operando spectroscopy, and density functional theory (DFT) simulations. Our study demonstrates the existence of two families of Fe macrocycles for oxygen reduction in alkaline electrolytes: (i) weak *OH binding macrocycles with one peak in the voltammogram and high peroxide selectivity and (ii) macrocycles with close to optimal *OH binding, which exhibit two voltametric peaks and almost no peroxide production. Here, we also propose three mechanisms that would explain our experimental findings. Understanding what differentiates these two families could shed light on how to optimize the activity of pyrolyzed FeNx catalysts.
Collapse
Affiliation(s)
- Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Ruixuan Chen
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Joyce Cheung
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Luke Higgins
- Diamond
Light Source, Didcot OX11 0DE, United
Kingdom
| | - Hui Luo
- Institute
for Sustainability, University of Surrey, Surrey GU2 7XH, United Kingdom
| | - Mengnan Wang
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Jesus Barrio
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Maria Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Alexander Bagger
- Department
of Physics, Danish Technical University, 2800 Kongens Lyngby, Denmark
| | - Ifan E. L. Stephens
- Department
of Materials, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| |
Collapse
|
2
|
Birara S, Majumder M, Metre RK. Bis(formazanate) iron(II) complexes as cathode materials for one-compartment H 2O 2 fuel cells. Dalton Trans 2025; 54:4120-4134. [PMID: 39902804 DOI: 10.1039/d4dt03253e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
In this paper, we describe the synthesis of two six-coordinate, pseudo(octahedral) bis(formazanate) Fe(II) complexes based on newly developed redox-active benzothiazole-substituted formazanate ligands. Complexes [FeII(L1)2], 1, and [FeII(L2)2], 2, were synthesized by reacting 1-(benzothiazol-2-yl)-5-phenyl-3-(pyren-1-yl)formazan (L1H) and 1-(benzothiazol-2-yl)-5-(2-benzoyl-4-chlorophenyl)-3-phenylformazan (L2H), respectively, with appropriate Fe(II) precursors at room temperature. The molecular structures of both bis(formazanate) iron complexes were established using single-crystal XRD, and other characterization methods were utilized to further characterize these complexes, as well as the newly synthesized ligands. Furthermore, the cyclic voltammetry studies of these compounds are documented, revealing that both complexes can undergo electrochemical reductions to create anionic and dianionic species. These complexes were further employed as cathodes in one-compartment membrane-less H2O2 fuel cells, operating in 0.5 M H2O2, with nickel foam serving as the anode. The maximum power densities achieved by the designed H2O2 fuel cells for complexes 1 and 2 were 1.88 mW cm-2 and 3.08 mW cm-2, respectively. This study demonstrates the significant potential of formazanate-based compounds in the development of cathode materials for H2O2 fuel cells.
Collapse
Affiliation(s)
- Sunita Birara
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Moumita Majumder
- Department of Chemistry, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| |
Collapse
|
3
|
Zhang T, Zhou J, Shen J. Molecular Dynamics Simulation of Low-Cycle Fatigue Behavior of Single/Polycrystalline Iron. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:217. [PMID: 39940193 PMCID: PMC11820339 DOI: 10.3390/nano15030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
The fatigue plastic mechanism and dislocation characteristics of engineering materials are the key to studying fatigue damage. In this study, the molecular dynamics (MD) method was employed to investigate the microstructural characteristics and fatigue mechanical properties of both single-crystalline and polycrystalline iron under varying strain amplitudes associated with cyclic hardening, cyclic softening, and cyclic saturation. The occurrence, accumulation, and formation process of the local plastic fatigue damage of monocrystalline/polycrystalline iron under fatigue load are discussed. The local plastic initiation and accumulation of single-crystal iron occur at the intersection of slip planes, which is the dislocation source. The 1/2<111> dislocation plays an important role in the fatigue plastic accumulation of single-crystal iron. Polycrystalline iron undergoes grain rotation and coalescence during cyclic loading. The grain size responsible for plastic deformation gradually increases. The initiation and accumulation of local plasticity occurs at the grain boundary, which eventually leads to fatigue damage at the grain boundary.
Collapse
Affiliation(s)
- Tianyu Zhang
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; (T.Z.); (J.S.)
- Shanxi Key Laboratory of Intelligent Equipment Technology in Harsh Environment, North University of China, Taiyuan 030051, China
| | - Jinjie Zhou
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; (T.Z.); (J.S.)
- Shanxi Key Laboratory of Intelligent Equipment Technology in Harsh Environment, North University of China, Taiyuan 030051, China
| | - Jinchuan Shen
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China; (T.Z.); (J.S.)
- Shanxi Key Laboratory of Intelligent Equipment Technology in Harsh Environment, North University of China, Taiyuan 030051, China
| |
Collapse
|
4
|
Scarpetta-Pizo L, Venegas R, Barrías P, Muñoz-Becerra K, Vilches-Labbé N, Mura F, Méndez-Torres AM, Ramírez-Tagle R, Toro-Labbé A, Hevia S, Zagal JH, Oñate R, Aspée A, Ponce I. Electron Spin-Dependent Electrocatalysis for the Oxygen Reduction Reaction in a Chiro-Self-Assembled Iron Phthalocyanine Device. Angew Chem Int Ed Engl 2024; 63:e202315146. [PMID: 37953459 DOI: 10.1002/anie.202315146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
The chiral-induced spin selectivity effect (CISS) is a breakthrough phenomenon that has revolutionized the field of electrocatalysis. We report the first study on the electron spin-dependent electrocatalysis for the oxygen reduction reaction, ORR, using iron phthalocyanine, FePc, a well-known molecular catalyst for this reaction. The FePc complex belongs to the non-precious catalysts group, whose active site, FeN4, emulates catalytic centers of biocatalysts such as Cytochrome c. This study presents an experimental platform involving FePc self-assembled to a gold electrode surface using chiral peptides (L and D enantiomers), i.e., chiro-self-assembled FePc systems (CSAFePc). The chiral peptides behave as spin filters axial ligands of the FePc. One of the main findings is that the peptides' handedness and length in CSAFePc can optimize the kinetics and thermodynamic factors governing ORR. Moreover, the D-enantiomer promotes the highest electrocatalytic activity of FePc for ORR, shifting the onset potential up to 1.01 V vs. RHE in an alkaline medium, a potential close to the reversible potential of the O2 /H2 O couple. Therefore, this work has exciting implications for developing highly efficient and bioinspired catalysts, considering that, in biological organisms, biocatalysts that promote O2 reduction to water comprise L-enantiomers.
Collapse
Affiliation(s)
- Laura Scarpetta-Pizo
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Ricardo Venegas
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Pablo Barrías
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Karina Muñoz-Becerra
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, 8370854, Chile
| | - Nayareth Vilches-Labbé
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Francisco Mura
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Ana María Méndez-Torres
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Rodrigo Ramírez-Tagle
- Facultad de Ingeniería y Arquitectura Universidad Central de Chile, Av. Sta. Isabel 1186, Santiago, 8330563, Chile
| | - Alejandro Toro-Labbé
- Departamento de Química-Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Región Metropolitana, Santiago, Chile
| | - Samuel Hevia
- Instituto de Física, Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6904411, Chile
| | - José H Zagal
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Rubén Oñate
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Alexis Aspée
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Ingrid Ponce
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| |
Collapse
|
5
|
Zhang L, Jin N, Yang Y, Miao XY, Wang H, Luo J, Han L. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review. NANO-MICRO LETTERS 2023; 15:228. [PMID: 37831204 PMCID: PMC10575848 DOI: 10.1007/s40820-023-01196-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
Single-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications. As an emergent coordination avenue, intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures, thereby enhancing electrocatalytic performance at active sites. In this review, we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications. Besides, the challenges and outlooks in this research field have also been emphasized. The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs, which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Na Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Yibing Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Xiao-Yong Miao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Wang
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China.
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
6
|
Guo XS, Huang ZY, Qi XW, Si LP, Zhang H, Liu HY. The optimization of iron porphyrin@MOF-5 derived Fe N C electrocatalysts for oxygen reduction reaction in zinc-air batteries. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Heppe N, Gallenkamp C, Paul S, Segura-Salas N, von Rhein N, Kaiser B, Jaegermann W, Jafari A, Sergueev I, Krewald V, Kramm UI. Substituent Effects in Iron Porphyrin Catalysts for the Hydrogen Evolution Reaction. Chemistry 2023; 29:e202202465. [PMID: 36301727 DOI: 10.1002/chem.202202465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
For a future hydrogen economy, non-precious metal catalysts for the water splitting reactions are needed that can be implemented on a global scale. Metal-nitrogen-carbon (MNC) catalysts with active sites constituting a metal center with fourfold coordination of nitrogen (MN4 ) show promising performance, but an optimization rooted in structure-property relationships has been hampered by their low structural definition. Porphyrin model complexes are studied to transfer insights from well-defined molecules to MNC systems. This work combines experiment and theory to evaluate the influence of porphyrin substituents on the electronic and electrocatalytic properties of MN4 centers with respect to the hydrogen evolution reaction (HER) in aqueous electrolyte. We found that the choice of substituent affects their utilization on the carbon support and their electrocatalytic performance. We propose an HER mechanism for supported iron porphyrin complexes involving a [FeII (P⋅)]- radical anion intermediate, in which a porphinic nitrogen atom acts as an internal base. While this work focuses on the HER, the limited influence of a simultaneous interaction with the support and an aqueous electrolyte will likely be transferrable to other catalytic applications.
Collapse
Affiliation(s)
- Nils Heppe
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Charlotte Gallenkamp
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany.,Department of Chemistry, Theoretical Chemistry, Technical University Darmstadt, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Stephen Paul
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Nicole Segura-Salas
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Niklas von Rhein
- Department of Chemistry, Theoretical Chemistry, Technical University Darmstadt, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Bernhard Kaiser
- Institute of Materials Science, Surface Science Division, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Wolfram Jaegermann
- Institute of Materials Science, Surface Science Division, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Atefeh Jafari
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607, Hamburg, Germany
| | - Ilya Sergueev
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607, Hamburg, Germany
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, Technical University Darmstadt, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Ulrike I Kramm
- Catalysts and Electrocatalysts, Department of Chemistry, Eduard-Zintl-Insitute for Inorganic and Physical Chemistry, Technical University Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| |
Collapse
|
8
|
Tailoring of electrocatalyst interactions at interfacial level to benchmark the oxygen reduction reaction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Dorovskikh SI, Klyamer DD, Fedorenko AD, Morozova NB, Basova TV. Electrochemical Sensor Based on Iron(II) Phthalocyanine and Gold Nanoparticles for Nitrite Detection in Meat Products. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155780. [PMID: 35957335 PMCID: PMC9371027 DOI: 10.3390/s22155780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 05/27/2023]
Abstract
Nitrites are widely used in the food industry, particularly for the preservation of meat products. Controlling the nitrate content in food is an important task to ensure people's health is not at risk; therefore, the search for, and research of, new materials that will modify the electrodes in the electrochemical sensors that detect and control the nitrate content in food products is an urgent task. In this paper, we describe the electrochemical behavior of a glass carbon electrode (GCE), modified with a Fe(II) tetra-tert-butyl phthalocyanine film (FePc(tBu)4/GCE), and decorated with gold nanoparticles (Au/FePc(tBu)4/GCE); this electrode was deposited using gas-phase methods. The composition and morphology of such electrodes were examined using spectroscopy and electron microscopy methods, whereas the main electrochemical characteristics were determined using cyclic voltammetry (CV) and amperometry (CA) methods in the linear ranges of CV 0.25-2.5 mM, CA 2-120 μM in 0.1 M phosphate buffer (pH = 6.8). The results showed that the modification of bare GCEs, with a Au/FePc(tBu)4 heterostructure, provided a high surface-to-volume ratio, thus ensuring its high sensitivity to nitrite ions of 0.46 μAμM-1. The sensor based on the Au/FePc(tBu)4/GCE has a low limit of nitrite detection at 0.35 μM, good repeatability, and stability. The interference study showed that the proposed Au/FePc(tBu)4/GCE exhibited a selective response in the presence of interfering anions, and the analytical capability of the sensor was demonstrated by determining nitrite ions in real samples of meat products.
Collapse
|
10
|
Tian Z, Wang Y, Li Y, Yao G, Zhang Q, Chen L. Theoretical study of the effect of coordination environment on the activity of metal macrocyclic complexes as electrocatalysts for oxygen reduction. iScience 2022; 25:104557. [PMID: 35769883 PMCID: PMC9234223 DOI: 10.1016/j.isci.2022.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/23/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Transition metal macrocyclic complexes are appealing catalysts for electrochemical oxygen reduction reaction (ORR). Here, we perform first-principles calculations to gain a comprehensive understanding on the structure-property relationship of the metal macrocyclic complex systems. Various modifications of the complexes are considered, including centered metal, axial ligand, coordination atom, substituent, and macrocycles. Based on simulation, introduction of appropriate apical ligand can improve the performance of all the three metals, whereas replacement of nitrogen with oxygen or carbon as the coordination atoms may enhance the Ni-centered systems. The antiaromatic ring stabilizes the ∗OOH intermediate, whereas the macrocycle with reduced electron density inhibits the binding with oxygen. By regulating the coordination environment, the overpotential can be significantly reduced. This work may assist the rational design of ORR catalysts and is of great significance for the future development of oxygen reduction catalysts. Metal macrocyclic complexes are potential electrocatalysts for ORR An understanding on structure-property relationship is gained based on simulation Various modifications are considered to improve the performance
Collapse
Affiliation(s)
- Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Corresponding author
| | - Yuan Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Yanle Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Corresponding author
| | - Ge Yao
- School of Physics, Collaborative Innovation Center of Advanced Microstructures, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Qiuju Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Corresponding author
| |
Collapse
|