1
|
Yang J, You H, Han Y, Chen H, Zhang K, Li Y, Bao J, Ge X, Pan G, Xing R. Synthesis of Sulfonyl Two-Dimensional Covalent Organic Frameworks for Supercapacitor Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11027-11035. [PMID: 39903815 DOI: 10.1021/acsami.4c22093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Covalent organic frameworks (COFs) are attracting more attention for energy storage applications. COFs possess unique structural properties, such as highly ordered pore structures, abundant functionalization sites, and tunable chemical properties, making them ideal candidates for the development of novel energy storage materials. In this work, we synthesized sulfonyl two-dimensional (2D) covalent organic frameworks (SLD-COFs) using 4,4'-sulfonyldiphenylamine (SLD). SLD-COFs have a remarkable conjugated structure, which includes imine groups forming large π-bonds, and the conjugated structure can provide consecutive electron conduction paths, which enables SLD-COF to transfer charges more efficiently, thus improving the electrical conductivity. Additionally, the sulfonyl groups introduce redox-active sites, which participate in the redox process during electrochemical reactions and generate a pseudocapacitive effect. For a current of 0.5 A/g, the specific capacitance of the SLD-COF material was 31.5 F/g in an acidic electrolyte and 41.7 F/g in an alkaline electrolyte. The structural flexibility and good electrochemical properties of the COFs make them a potentially essential component of energy storage applications. Meanwhile, the capacitance retention of SLD-COFs reaches 78.3% after 1000 GCD cycles at a current density of 1 A/g, which indicates its good cycling stability.
Collapse
Affiliation(s)
- Jingjing Yang
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Huibiao You
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yongle Han
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Hong Chen
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Kaiqi Zhang
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yanan Li
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China
- Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Baotou 014010, China
| | - Jinxiao Bao
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China
- Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Baotou 014010, China
| | - Xin Ge
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China
- Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Baotou 014010, China
| | - Gaofei Pan
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China
- Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Baotou 014010, China
| | - Ruiguang Xing
- School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
- Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China
- Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Baotou 014010, China
| |
Collapse
|
2
|
Kumar Silori G, Chien SC, Lin LC, Ho KC. Four-State Electrochromism in Tris(4-aminophenyl)amine- terephthalaldehyde-based Covalent Organic Framework. Angew Chem Int Ed Engl 2025; 64:e202416046. [PMID: 39250327 DOI: 10.1002/anie.202416046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Covalent organic frameworks (COFs) are of massive interest due to their potential application spanning diverse fields such as gas storage and separation, catalysis, drug delivery systems, sensing, and organic electronics. In view of their application-oriented quest, the field of electrochromism marked a significant stride with the reporting of the first electrochromic COF in 2019 [J. Am. Chem. Soc. 2019, 141, 19831-19838]. Since then, new and novel COF structures with electrochromic features (denoted as ecCOFs) have been searched continuously. Yet, only a handful of ecCOFs have been constructed to date. A closer look at these reports suggests that multielectrochromism (showing at least three redox color states) in a COF assembly has only been achieved once, manifested through three-state electrochromism [Angew. Chem. 2021, 133, 12606-1261]. Herein, we report four-state electrochromism in tris(4-aminophenyl)amine-terephthalaldehyde (TAPA-PDA)-based COF constructed through the metal-catalyst free Schiff base approach. The four-state (orange, pear, green, and cyan) electrochromism demonstrated by the TAPA-PDA ecCOF opens several futuristic avenues for ecCOF's end use in flip-flop logic gates, intelligent windows, decorative displays, and energy-saving devices.
Collapse
Affiliation(s)
- Gaurav Kumar Silori
- Department of Chemical Engineering, National Taiwan University, 10617, Taipei, Taiwan
| | - Szu-Chia Chien
- Department of Chemical and Materials Engineering, National Central University, 320317, Taoyuan, Taiwan
| | - Li-Chiang Lin
- Department of Chemical Engineering, National Taiwan University, 10617, Taipei, Taiwan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 43210, Columbus, Ohio, United States
| | - Kuo-Chuan Ho
- Department of Chemical Engineering, National Taiwan University, 10617, Taipei, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, 10617, Taipei, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, 10617, Taipei, Taiwan
| |
Collapse
|
3
|
Chen CX, Yang SS, Pang JW, He L, Zang YN, Ding L, Ren NQ, Ding J. Anthraquinones-based photocatalysis: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100449. [PMID: 39104553 PMCID: PMC11298862 DOI: 10.1016/j.ese.2024.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
In recent years, there has been significant interest in photocatalytic technologies utilizing semiconductors and photosensitizers responsive to solar light, owing to their potential for energy and environmental applications. Current efforts are focused on enhancing existing photocatalysts and developing new ones tailored for environmental uses. Anthraquinones (AQs) serve as redox-active electron transfer mediators and photochemically active organic photosensitizers, effectively addressing common issues such as low light utilization and carrier separation efficiency found in conventional semiconductors. AQs offer advantages such as abundant raw materials, controlled preparation, excellent electron transfer capabilities, and photosensitivity, with applications spanning the energy, medical, and environmental sectors. Despite their utility, comprehensive reviews on AQs-based photocatalytic systems in environmental contexts are lacking. In this review, we thoroughly describe the photochemical properties of AQs and their potential applications in photocatalysis, particularly in addressing key environmental challenges like clean energy production, antibacterial action, and pollutant degradation. However, AQs face limitations in practical photocatalytic applications due to their low electrical conductivity and solubility-related secondary contamination. To mitigate these issues, the design and synthesis of graphene-immobilized AQs are highlighted as a solution to enhance practical photocatalytic applications. Additionally, future research directions are proposed to deepen the understanding of AQs' theoretical mechanisms and to provide practical applications for wastewater treatment. This review aims to facilitate mechanistic studies and practical applications of AQs-based photocatalytic technologies and to improve understanding of these technologies.
Collapse
Affiliation(s)
- Cheng-Xin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, 100096, China
| | - Lei He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ya-Ni Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lan Ding
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
4
|
Ren G, Cai F, Wang S, Luo Z, Yuan Z. Iodine doping induced activation of covalent organic framework cathodes for Li-ion batteries. RSC Adv 2023; 13:18983-18990. [PMID: 37362603 PMCID: PMC10286563 DOI: 10.1039/d3ra01414b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Covalent organic frameworks (COFs) are considered as promising candidate organic electrode materials for lithium-ion batteries (LIBs) because of their relatively high capacity, ordered nanopores, and limited solubility in electrolyte. However, the practical capacity of COF materials is mainly affected by their low electronic/ionic conductivity and the deep-buried active sites inside the COFs. Here, we synthesize an iodine doped β-ketoenamine-linked COF (2,6-diaminoanthraquinone and 1,3,5-triformylphloroglucinol, denoted as COF-I) by a facile one-pot solvothermal reaction. The introduction of iodine can make the COF more lithiophilic inside and exhibit high intrinsic ion/electron transport, ensuring more accessible active sites of the COFs. Consequently, when used as the cathode of LIBs, COF-I demonstrates a high initial discharge capacity of 140 mA h g-1 at 0.2 A g-1, and excellent cycling stability with 92% capacity retention after 1000 cycles. Furthermore, a reversible capacity of 95 mA h g-1 at 1.0 A g-1 is also achieved after 300 cycles. Our study provides a facile way to develop high-performance COF electrode materials for LIB applications.
Collapse
Affiliation(s)
- Guoying Ren
- Tianjin Key Lab for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China
| | - Fengshi Cai
- Tianjin Key Lab for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China
| | - Shoucheng Wang
- Tianjin Key Lab for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China
| | - Zhiqiang Luo
- Key Laboratory of Display Materials and Photoelectric Devices (Tianjin University of Technology), Ministry of Education of China Tianjin 300384 China
| | - Zhihao Yuan
- National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
5
|
Seddiki I, N’Diaye BI, Skene WG. Survey of Recent Advances in Molecular Fluorophores, Unconjugated Polymers, and Emerging Functional Materials Designed for Electrofluorochromic Use. Molecules 2023; 28:molecules28073225. [PMID: 37049988 PMCID: PMC10096808 DOI: 10.3390/molecules28073225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
In this review, recent advances that exploit the intrinsic emission of organic materials for reversibly modulating their intensity with applied potential are surveyed. Key design strategies that have been adopted during the past five years for developing such electrofluorochromic materials are presented, focusing on molecular fluorophores that are coupled with redox-active moieties, intrinsically electroactive molecular fluorophores, and unconjugated emissive organic polymers. The structural effects, main challenges, and strides toward addressing the limitations of emerging fluorescent materials that are electrochemically responsive are surveyed, along with how these can be adapted for their use in electrofluorochromic devices.
Collapse
Affiliation(s)
- Ilies Seddiki
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - Brelotte Idriss N’Diaye
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - W. G. Skene
- Laboratoire de Caractérisation Photophysique des Matériaux Conjugués Département de Chimie, Campus MIL, Université de Montréal, CP 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
6
|
Zhang W, Li J, Qin W. Solid-contact polymeric membrane ion-selective electrodes using a covalent organic framework@reduced graphene oxide composite as ion-to-electron transducer. Talanta 2023; 258:124444. [PMID: 36934662 DOI: 10.1016/j.talanta.2023.124444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
A solid-contact ion-selective electrode (SC-ISE) based on a covalent organic framework@reduced graphene oxide (rGO) composite is proposed. The composite can be synthesized through the polycondensation of 1,3,5-triformylphloroglucinol (TFP) and 2,6-diaminoanthraquinone (DAAQ) on the rGO nanosheets, which shows high capacitance and good redox-active properties. By applying Cd2+-ISE as a model, the electrode exhibits a Nernstian slope of 29.7 ± 0.4 mV/decade in the activity range of 1.0 × 10-7 - 7.9 × 10-4 M and the limit of detection is 6.8 × 10-8 M. Particularly, the electrode based on DAAQ-TFP@rGO exhibits a low potential drift of 1.2 ± 0.2 μV/h over 70 h due to the large capacitance of 2.0 mF. Moreover, the DAAQ-TFP@rGO-based Cd2+-ISE shows good reproducibility and the standard deviations of the standard potentials for single batch and batch-to-batch are 0.28 (n = 4) and 0.30 mV (n = 4), respectively. The developed SC-Cd2+-ISE is not disturbed by light or gas and no aqueous layer occurs between the sensing membrane and DAAQ-TFP@rGO layer. The DAAQ-TFP@rGO composite is highly promising for construction of calibration-free SC-ISEs.
Collapse
Affiliation(s)
- Wenting Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong, 264005, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China
| | - Jinghui Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China.
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
7
|
Xiong S, Li Z, Wang X, Gong M, Chu J, Zhang R, Wu B, Wang C, Li Z. High specific surface area triphenylamine-based covalent organic framework/polyaniline nanocomposites for supercapacitor application. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Covalent organic frameworks (COFs) possess extraordinary porosity, structural diversity, and good electrochemical performance, and have broad application prospects in the field of energy storage. However, the low conductivity of COFs limits its further development. In this paper, the electrochemical performance of triphenylamine-based COFs (TPA-COFs) was improved by compounding with highly conductive polyaniline (PANI) using solvothermal synthesis process. The highly conductive polyaniline fibers can act as conductive path in the composite to accelerate the charge transfer rate of TPA-COFs. The π-π interaction between TPA-COFs and PANI effectively decreases the agglomeration degree of PANI. The good dispersion of composite results in that the specific surface area of TPA-COFs/PANI-20 is high as 1233.9 m2 g−1, which provides rich diffusion channels for electrolyte ions. Moreover, the strong π-π structure in the composites ensures the stability of the material skeleton. Thus, TPA-COFs/PANI composite exhibits excellent rate characteristics and cycling stability.
Collapse
Affiliation(s)
- Shanxin Xiong
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an , China
| | - Zhuolong Li
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Xiaoqin Wang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Ming Gong
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Jia Chu
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Runlan Zhang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Bohua Wu
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Chenxu Wang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, China
| |
Collapse
|
8
|
Yao M, Guo C, Geng Q, Zhang Y, Zhao X, Zhao X, Wang Y. Construction of Anthraquinone-Containing Covalent Organic Frameworks/Graphene Hybrid Films for a Flexible High-Performance Microsupercapacitor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mengyao Yao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
- Shaoxing Institute of Technology, Shanghai University, 78 Sanjiang Road, Zhejiang 312000, People’s Republic of China
| | - Chaofei Guo
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
| | - Qianhao Geng
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
| | - Yifan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
| | - Xin Zhao
- Shaoxing Institute of Technology, Shanghai University, 78 Sanjiang Road, Zhejiang 312000, People’s Republic of China
| | - Xin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 Renmin North Road, Shanghai 201620, People’s Republic of China
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), 99 Shangda Road, Shanghai 200444, People’s Republic of China
| |
Collapse
|