1
|
Fu X, Li Q, Li H, Xiao W, Xiao Z, Xu G, Chen D, Wu Z, Wang L. Nitrogen-Doped CoP-Co 2P-Supported Ru with Interconnected Channels through a Microwave Quasi-Solid Approach for Hydrogen Evolution Reaction over a Wide pH Range. Inorg Chem 2024; 63:15477-15484. [PMID: 39105705 DOI: 10.1021/acs.inorgchem.4c02623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Transition-metal phosphides (TMPs) have attracted extensive attention in energy-related fields, especially for electrocatalytic hydrogen evolution reaction (HER). However, it is imperative to develop a facile and time-consuming approach to prepare metal phosphides with satisfactory catalytic performance. Herein, nitrogen-doped CoP-Co2P decorated with Ru (Ru/N-CoP-Co2P) is synthesized (Ru/N-CoP-Co2P) through a hydrothermal route and following an ultrafast and simple microwave avenue within 20 s. The achieved Ru/N-CoP-Co2P possesses an interconnected porous morphology to expose abundant active sites and accelerate the mass transport. Moreover, N doping and Ru-supported decorated Ru/N-CoP-Co2P also play a key role in promoting the electrocatalytic activity. Therefore, the as-designed Ru/N-CoP-Co2P presents good catalytic performance for the HER in a wide pH range. Ru/N-CoP-Co2P merely needs overpotentials of 63, 100, and 65 mV to obtain 10 mA cm-2 in acidic, alkaline, and seawater electrolytes. This research provides a novel and efficient strategy for the synthesis of TMPs with highly efficient catalytic activity.
Collapse
Affiliation(s)
- Xiaowei Fu
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Qichang Li
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Hongdong Li
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Zhenyu Xiao
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Guangrui Xu
- College of Materials Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Dehong Chen
- College of Materials Science and Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Zexing Wu
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China
| |
Collapse
|
2
|
Zhou D, Zhang S, Khan AU, Chen L, Ge G. A wearable AuNP enhanced metal-organic gel (Au@MOG) sensor for sweat glucose detection with ultrahigh sensitivity. NANOSCALE 2023; 16:163-170. [PMID: 38073477 DOI: 10.1039/d3nr05179j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The demand for sensitive and non-invasive sensors for monitoring glucose levels in sweat has grown considerably in recent years. This study presents the development of a wearable sensor for sweat glucose detection with ultrahigh sensitivity. The sensor was fabricated by embedding Au nanoparticles (AuNPs) and metal-organic gels (MOGs) on nickel foam (NF). A non-enzymatic electrocatalytic glucose sensor has been developed to combine the three-dimensional network of MOGs with more active sites favourable for glucose diffusion and the transfer of electrons from glucose to the electrode. These results show that the sensor has an ultrahigh sensitivity of 13.94 mA mM-1 cm-2, a linear detection range between 2 and 600 μM, and a lower detection limit as low as 1 μM (signal/noise = 3) with comparable accuracy and reliability under non-alkaline conditions to those of high-pressure ion chromatography (HPIC). Furthermore, a wearable sweat glucose sensor has been constructed by sputtering an Au conductive layer on a flexible polydimethylsiloxane (PDMS) substrate and coating it with Au@MOGs. Our work demonstrates that the combination of Au NPs and MOGs can enhance the sensitivity and activity of these materials, making them useful for electrocatalytic glucose monitoring with ultrahigh sensitivity.
Collapse
Affiliation(s)
- Dengfeng Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuangbin Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
| |
Collapse
|
3
|
Zhang Y, Wei X, Gu Q, Zhang J, Ding Y, Xue L, Chen M, Wang J, Wu S, Yang X, Zhang S, Lei T, Wu Q. Cascade amplification based on PEI-functionalized metal–organic framework supported gold nanoparticles/nitrogen–doped graphene quantum dots for amperometric biosensing applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|