1
|
Kumar S, Tripathi A, Chakraborty I, Ghangrekar MM. Engineered nanomaterials for carbon capture and bioenergy production in microbial electrochemical technologies: A review. BIORESOURCE TECHNOLOGY 2023; 389:129809. [PMID: 37797801 DOI: 10.1016/j.biortech.2023.129809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
The mounting threat of global warming, fuelled by industrialization and anthropogenic activities, is undeniable. In 2017, atmospheric carbon dioxide (CO2), the primary greenhouse gas, exceeded 410 ppm for the first time. Shockingly, on April 28, 2023, this figure surged even higher, reaching an alarming 425 ppm. Even though extensive research has been conducted on developing efficient carbon capture and storage technologies, most suffer from high costs, short lifespans, and significant environmental impacts. Recently, the use of engineered nanomaterials (ENM), particularly in microbial electrochemical technologies (METs), has gained momentum owing to their appropriate physicochemical properties and catalytic activity. By implementing ENM, the MET variants like microbial electrosynthesis (MES) and photosynthetic microbial fuel cells (pMFC) can enhance carbon capture efficiency with simultaneous bioenergy production and wastewater treatment. This review provides an overview of ENMs' role in carbon capture within MES and pMFC, highlighting advancements and charting future research directions.
Collapse
Affiliation(s)
- Santosh Kumar
- P. K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Akash Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Indrajit Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Makarand M Ghangrekar
- P. K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
2
|
Chung TH, Shahidi M, Mezbahuddin S, Dhar BR. Ensemble machine learning approach for examining critical process parameters and scale-up opportunities of microbial electrochemical systems for hydrogen peroxide production. CHEMOSPHERE 2023; 324:138313. [PMID: 36878371 DOI: 10.1016/j.chemosphere.2023.138313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen peroxide (H2O2) production in microbial electrochemical systems (MESs) is an attractive option for enabling a circular economy in the water/wastewater sector. Here, a machine learning algorithm was developed, using a meta-learning approach, to predict the H2O2 production rates in MES based on the seven input variables, including various design and operating parameters. The developed models were trained and cross-validated using the experimental data collected from 25 published reports. The final ensemble meta-learner model (combining 60 models) demonstrated a high prediction accuracy with very high R2 (0.983) and low root-mean-square error (RMSE) (0.647 kg H2O2 m-3 d-1) values. The model identified the carbon felt anode, GDE cathode, and cathode-to-anode volume ratio as the top three most important input features. Further scale-up analysis for small-scale wastewater treatment plants indicated that proper design and operating conditions could increase the H2O2 production rate to as high as 9 kg m-3 d-1.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Manjila Shahidi
- 4S Analytics & Modelling Ltd., Edmonton, AB, T6W 3V6, Canada
| | | | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
3
|
Das A, Peu SD, Hossain MS, Akanda MAM, Salah MM, Akanda MMH, Rahman M, Das BK. Metal Oxide Nanosheet: Synthesis Approaches and Applications in Energy Storage Devices (Batteries, Fuel Cells, and Supercapacitors). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1066. [PMID: 36985960 PMCID: PMC10057665 DOI: 10.3390/nano13061066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the increasing energy requirement and consumption necessitates further improvement in energy storage technologies to obtain high cycling stability, power and energy density, and specific capacitance. Two-dimensional metal oxide nanosheets have gained much interest due to their attractive features, such as composition, tunable structure, and large surface area which make them potential materials for energy storage applications. This review focuses on the establishment of synthesis approaches of metal oxide nanosheets (MO nanosheets) and their advancements over time, as well as their applicability in several electrochemical energy storage systems, such as fuel cells, batteries, and supercapacitors. This review provides a comprehensive comparison of different synthesis approaches of MO nanosheets, as well their suitability in several energy storage applications. Among recent improvements in energy storage systems, micro-supercapacitors, and several hybrid storage systems are rapidly emerging. MO nanosheets can be employed as electrode and catalyst material to improve the performance parameters of energy storage devices. Finally, this review outlines and discusses the prospects, future challenges, and further direction for research and applications of metal oxide nanosheets.
Collapse
Affiliation(s)
- Arnob Das
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| | - Susmita Datta Peu
- Department of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Sanowar Hossain
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| | - Md Abdul Mannan Akanda
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Mostafa M. Salah
- Electrical Engineering Department, Future University in Egypt, Cairo 11835, Egypt
| | | | - Mahbubur Rahman
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Barun K. Das
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| |
Collapse
|
4
|
Mukhopadhyay D, Chang C, Kulsreshtha M, Gupta P. Bio-separation of value-added products from Kraft lignin: A promising two-stage lignin biorefinery via microbial electrochemical technology. Int J Biol Macromol 2023; 227:307-315. [PMID: 36509205 DOI: 10.1016/j.ijbiomac.2022.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The most ubiquitous aromatic biopolymer in nature, lignin offers a promising foundation for the development of bio-based chemicals with wide-ranging industrial uses attributable to its aromatic structure. Lignin must first be depolymerized into smaller oligomeric and monomeric units at the initial stage of lignin bioconversion, followed by separation to recover valuable products. This study demonstrates an integrative biorefinery idea based on in-situ depolymerization of the lignin via microbial electro-Fenton reaction in a microbial peroxide-producing cell and recovery of the identified products i.e., phenolic or aromatic monomers by one step high throughput chromatography. The yield percentage of acetovanillone, ethylvanillin, and ferulic acid recovered from the depolymerized lignin using the integrative biorefinery strategy were 2.1 %, 9.1 %, and 9.04 %, respectively. These products have diverse industrial usage and can be employed as platform chemicals. The development of a novel system for efficient simultaneous lignin depolymerization and subsequent quality separation are demonstrated in this study.
Collapse
Affiliation(s)
- Dhruva Mukhopadhyay
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India.
| | - Changsomba Chang
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India.
| | - Mohit Kulsreshtha
- Department of Chemistry, Indian Institute of Technology, Roorkee, India.
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India.
| |
Collapse
|
5
|
Fan L, Gong Y, Wan J, Wei Y, Shi H, Liu C. Flower-like molybdenum disulfide decorated ZIF-8-derived nitrogen-doped dodecahedral carbon for electro-catalytic degradation of phenol. CHEMOSPHERE 2022; 298:134315. [PMID: 35301999 DOI: 10.1016/j.chemosphere.2022.134315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
In this work, flower-like molybdenum disulfide was constructed on the surface of ZIF-8-derived nitrogen-doped dodecahedral carbon (ZNC) for the electrocatalytic degradation of phenol. The flower-like nanostructure of MoS2@ZNC contributed to the exposure of more edge-active sites of MoS2. At the same time, Mo4+ and Mo6+ co-existed in MoS2@ZNC, which promoted the generation of H2O2 and •OH, and improved the catalytic activity of composite materials. In addition, electrochemical performance analysis showed that MoS2 loaded on the surface of ZNC significantly improved the redox capacity of the material, and the composite ratio of MoS2 and ZNC affected the structure and properties of MoS2@ZNC composites. Moreover, the electrochemical performance of prepared MoS2@ZNC was evaluated by the generation of hydroxyl (•OH) and the degradation efficiency of phenol. The results showed that MoS2@ZNC-2 had an excellent phenol degradation efficiency (98.8%) and COD removal efficiency (86.8%) within 120 min. Furthermore, MoS2@ZNC cathode still maintained good performance after being experimented with 20 times, indicated the excellent stability of MoS2@ZNC.
Collapse
Affiliation(s)
- Lei Fan
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Yuguo Gong
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Jiafeng Wan
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China.
| | - Yuhan Wei
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Haolin Shi
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China
| | - Chuntao Liu
- School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
6
|
Humidity Sensing Ceria Thin-Films. NANOMATERIALS 2022; 12:nano12030521. [PMID: 35159866 PMCID: PMC8840404 DOI: 10.3390/nano12030521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
Abstract
Lowering the constitutive domains of semiconducting oxides to the nano-range has recently opened up the possibility of added benefit in the research area of sensing materials, in terms both of greater specific surface area and pore volume. Among such nanomaterials, ceria has attracted much attention; therefore, we chemically derived homogeneous ceria nanoparticle slurries. One set of samples was tape-casted onto a conducting glass substrate to form thin-films of various thicknesses, thereby avoiding demanding reaction conditions typical of physical depositions, while the other was pressed into pellets. Structural and microstructural features, along with electrical properties and derivative humidity-sensing performance of ceria thin-films and powders pressed into pellets, were studied in detail. Particular attention was given to solid-state impedance spectroscopy (SS-IS), under controlled relative humidity (RH) from 30%–85%, in a wide temperature and frequency range. Moreover, for the thin-film setup, measurements were performed in surface-mode and cross-section-mode. From the results, we extrapolated the influence of composition on relative humidity, the role of configuration and thin-film thickness on electrical properties, and derivative humidity-sensing performance. The structural analysis and depth profiling both point to monophasic crystalline ceria. Microstructure analysis reveals slightly agglomerated spherical particles and thin-films with low surface roughness. Under controlled humidity, the shape of the conductivity spectrum stays the same along with an increase in RH, and a notable shift to higher conductivity values. The relaxation is slow, as the thickness of the pellet slows the return of conductivity values. The increase in humidity has a positive effect on the overall DC conductivity, similar to the temperature effect for semiconducting behavior. As for the surface measurement setup, the thin-film thickness impacts the shape of the spectra and electrical processes. The surface measurement setup turns out to be more sensitive to relative humidity changes, emphasized with higher RH, along with an increase in thin-film thickness. The moisture directly affects the conductivity spectra in the dispersion part, i.e., on the localized short-range charge carriers. Moisture sensitivity is a reversible process for thin-film samples, in contrast to pellet form samples.
Collapse
|