1
|
Sharma J, Alagar S, Aashi, Kaur R, Gaur A, Krishankant, Pundir V, Upreti D, Rani R, Arun K, Bagchi V. Topotactic transformation of zeolitic imidazolate frameworks into high-performance battery type electrodes for supercapattery application. Dalton Trans 2024; 53:18745-18753. [PMID: 39495347 DOI: 10.1039/d4dt02507e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Supercapacitors (SCs) are well recognized for their excessive power output and cycling stability, but they often suffer from limited energy density. A promising solution to this challenge is the hybrid supercapattery (HSC) concept, which integrates two different electrodes with disparate charge-storage systems to provide energy and power. In this work, transition-metal phosphides (TMPs), specifically a Cu-doped cobalt phosphide wrapped with an N-doped porous carbon network (CCP-NPC), were used as positive electrode materials in HSCs. With a specific capacitance of 5.99 F cm-2 and a capacitance retention of 87% after 10 000 cycles, the extremely active CCP-5-NPC (5% Cu-doped cobalt phosphide wrapped with an N-doped porous carbon network) exhibits numerous redox sites. The unique structure of CCP-5-NPC, characterized by its cubical shape, coarse surface, and porous structure, greatly enhances the electrochemically active sites (EAS) and specific surface areas (SSA) of the electrode material, facilitating efficient charge transfer kinetics for ions and electrons in HSCs. The potential hybrid supercapattery (CCP-5-NPC||r-GO device) also demonstrated a higher energy density of 0.563 mW h cm-2 at a power density of 4.8 mW cm-2 at 3 mA cm-2 and a cyclic stability of 87.7% after 10 000 cycles. This work provides a basis for the development of highly efficient HSCs in the future by topotactically converting extremely porous materials into energy storage devices.
Collapse
Affiliation(s)
- Jatin Sharma
- Energy and Environment Research Lab, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Srinivasan Alagar
- Energy and Environment Research Lab, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Aashi
- Energy and Environment Research Lab, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Rajdeep Kaur
- Energy and Environment Research Lab, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Ashish Gaur
- Energy and Environment Research Lab, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Krishankant
- Energy and Environment Research Lab, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Vikas Pundir
- Energy and Environment Research Lab, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Deepak Upreti
- Energy and Environment Research Lab, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Rekha Rani
- Energy and Environment Research Lab, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - K Arun
- Energy and Environment Research Lab, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Vivek Bagchi
- Energy and Environment Research Lab, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
2
|
Rudra S, Seo HW, Sarker S, Kim DM. Supercapatteries as Hybrid Electrochemical Energy Storage Devices: Current Status and Future Prospects. Molecules 2024; 29:243. [PMID: 38202828 PMCID: PMC10780446 DOI: 10.3390/molecules29010243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Among electrochemical energy storage (EES) technologies, rechargeable batteries (RBs) and supercapacitors (SCs) are the two most desired candidates for powering a range of electrical and electronic devices. The RB operates on Faradaic processes, whereas the underlying mechanisms of SCs vary, as non-Faradaic in electrical double-layer capacitors (EDLCs), Faradaic at the surface of the electrodes in pseudo-capacitors (PCs), and a combination of both non-Faradaic and Faradaic in hybrid supercapacitors (HSCs). EDLCs offer high power density but low energy density. HSCs take advantage of the Faradaic process without compromising their capacitive nature. Unlike batteries, supercapacitors provide high power density and numerous charge-discharge cycles; however, their energy density lags that of batteries. Supercapatteries, a generic term that refers to hybrid EES devices that combine the merits of EDLCs and RBs, have emerged, bridging the gap between SCs and RBs. There are numerous articles and reviews on EES, and many of those articles have emphasized various aspects of HSCs and supercapatteries. However, there are no recent reviews that dealt with supercapatteries in general. Here, we review recently published critically selected articles on supercapatteries. The review discusses different EES devices and how supercapatteries are different from others. Also discussed are properties, design strategies, and future perspectives on supercapatteries.
Collapse
Affiliation(s)
| | | | - Subrata Sarker
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Republic of Korea; (S.R.); (H.W.S.)
| | - Dong Min Kim
- Department of Materials Science and Engineering, Hongik University, Sejong 30016, Republic of Korea; (S.R.); (H.W.S.)
| |
Collapse
|
4
|
Zhang ZR, Ren ZH, Luo CY, Ma LJ, Dai J, Zhu QY. Redox-Active Two-Dimensional Tetrathiafulvalene-Copper Metal-Organic Framework with Boosted Electrochemical Performances for Supercapatteries. Inorg Chem 2023; 62:4672-4679. [PMID: 36883521 DOI: 10.1021/acs.inorgchem.3c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted noticeable attention as promising candidates for electrochemical energy storage. However, the lack of electrical conductivity and the weak stability of most MOFs result in poor electrochemical performances. Here, a tetrathiafulvalene (TTF)-based complex, formulated as [(CuCN)2(TTF(py)4)] (1) (TTF-(py)4 = tetra(4-pyridyl)-TTF), is assembled by in situ generation of coordinated CN- from a nontoxic source. Single-crystal X-ray diffraction analysis reveals that compound 1 possesses a two-dimensional layered planar structure, which is further stacked in parallel to form a three-dimensional supramolecular framework. The planar coordination environment of 1 is the first example of a TTF-based MOF. Attributed to the unique structure and redox TTF ligand, the electrical conductivity of 1 is significantly increased by 5 orders of magnitude upon iodine treatment. The iodine-treated 1 (1-ox) electrode displays typical battery-type behavior through electrochemical characterizations. The supercapattery based on the 1-ox positrode and AC negatrode presents a high specific capacity of 266.5 C g-1 at a specific current of 1 A g-1 with a remarkable specific energy of 62.9 Wh kg-1 at a specific power of 1.1 kW kg-1. The excellent electrochemical performance of 1-ox is one of the best among those reported supercapatteries, demonstrating a new strategy for developing MOF-based electrode materials.
Collapse
Affiliation(s)
- Zhi-Ruo Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhou-Hong Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chen-Yue Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Li-Jun Ma
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jie Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qin-Yu Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
6
|
Yuan S, Yu R, Tu Y, Du Y, Feng X, Nie F. An enhanced chemiluminescence hybrids of luminol by sulfonated polyaniline decorated copper-based metal organic frame composite applicable to the measurement of hydrogen peroxide in a wide pH range. Talanta 2023; 254:124183. [PMID: 36512973 DOI: 10.1016/j.talanta.2022.124183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Here, sulfonated polyaniline (SPAN) was decorated on the surface of copper-based metal organic frame (HKUST-1) and the composite was functionalized by luminol to construct a chemiluminescence (CL) hybrids (SPAN/HKUST-1@Luminol). The as-prepared SPAN/HKUST-1@Luminol demonstrated a great dispersion and stability performance in aqueous solution. Moreover, the resultant SPAN/HKUST-1@Luminol hybrids exhibited extremely strong CL properties, and the CL quantum yield was 136 times higher than that of luminol. In particular, it exhibited outstanding CL activity not only under alkaline conditions, but also under neutral conditions. The sensitive response of the hybrid to hydrogen peroxide was used to construct CL methods for the detection of hydrogen peroxide at a wide range of pH, with the detection limit of 60 nM at a neutral condition and 25 pM at alkaline condition. Due to strong and stable signal of the SPAN/HKUST-1@Luminol, the CL method provides a viable tool for determination of H2O2 in biological systems and enabled the monitoring of stimulated production of H2O2 released by living cells.
Collapse
Affiliation(s)
- Sijie Yuan
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China
| | - Ru Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China
| | - Ying Tu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China
| | - Yanhua Du
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Xuan Feng
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Fei Nie
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, Shaanxi, People's Republic of China.
| |
Collapse
|