1
|
Lee MT. Functionalized Triblock Copolymers with Tapered Design for Anion Exchange Membrane Fuel Cells. Polymers (Basel) 2024; 16:2382. [PMID: 39204600 PMCID: PMC11359524 DOI: 10.3390/polym16162382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Triblock copolymers such as styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) have been widely used as an anion exchange membrane for fuel cells due to their phase separation properties. However, modifying the polymer architecture for optimized membrane properties is still challenging. This research develops a strategy to control the membrane morphology based on quaternized SEBS (SEBS-Q) by dual-tapering the interfacial block sequences. The structural and transport properties of SEBS-Q with various tapering styles at different hydration levels are systematically investigated by coarse-grained molecular simulations. The results show that the introduction of the tapered regions induces the formation of a bicontinuous water domain and promotes the diffusivity of the mobile components. The interplay between the solvation of the quaternary groups and the tapered fraction determines the conformation of polymer chains among the hydrophobic-hydrophilic subdomains. The strategy presented here provides a new path to fabricating fuel cell membranes with controlled microstructures.
Collapse
Affiliation(s)
- Ming-Tsung Lee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
2
|
Roggi A, Agonigi G, Resta C, Filpi A, Martinelli E, Guazzelli E. Effects of Structurally Different Tertiary Amines on the Properties of Quaternized Anionic Exchange Membranes Potentially Applicable for Water Electrolysis. Macromol Rapid Commun 2024; 45:e2400027. [PMID: 38413001 DOI: 10.1002/marc.202400027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/23/2024] [Indexed: 02/29/2024]
Abstract
In this work, two structurally different monoamines (trimethylamine [TMA] and N-methylpiperidine [N-MPip]) are used for the amination of a g-VBC-15 graft copolymer, obtained by the functionalization of a mechanically robust, commercially available styrene-butadiene block copolymer (SB) with vinylbenzyl chloride (VBC) via solution free-radical polymerization. Results demonstrate that g-VBC-15-based membranes quaternized with TMA have superior electrochemical performance than N-MPip counterparts; while, the mechanical properties are good and only slightly inferior to those of N-MPip. Therefore, TMA is the selected monoamine to be alternatively mixed with two polyamines (tetramethyl-1,3-propanediamine [TMPDA] and N,N,N',N'',N''-pentamethyldiethylenetriamine [PMDETA]) into different proportions, in order to modulate the average functionality of the amination mixture in terms of number of amine functional groups available for the quaternization reaction of the membranes. g-VBC-15-based membranes derived therefrom are extensively characterized to assess their thermal, mechanical, and ex situ electrochemical properties. Results indicate that membranes quaternized with a TMA/PMDETA mixture (90:10 in mole) display the highest conductivity among all the investigated membranes aminated with polyamine-based mixtures. Moreover, they have comparable mechanical and electrochemical properties to those quaternized with TMA, while exhibiting a reduced water uptake.
Collapse
Affiliation(s)
- Andrea Roggi
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, Pisa, 56126, Italy
| | | | - Claudio Resta
- Enapter S.R.L, Crespina Lorenzana, Pisa, 56040, Italy
| | - Antonio Filpi
- Enapter S.R.L, Crespina Lorenzana, Pisa, 56040, Italy
| | - Elisa Martinelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, Pisa, 56126, Italy
| | - Elisa Guazzelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, Pisa, 56126, Italy
| |
Collapse
|
3
|
Wang F, Sun Z, Zhang H, Zhu H. Study on AEMs with Excellent Comprehensive Performance Prepared by Covalently Cross-Linked p-Triphenyl with SEBS Remotely Grafted Piperidine Cations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7894-7903. [PMID: 38300277 DOI: 10.1021/acsami.3c18256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A series of SEBS-C6-PIP-yPTP (y = 0-15%) AEMs with good mechanical and chemical stability were prepared by combining the strong rigidity of p-triphenyl, good toughness of SEBS, and excellent stability of PIP cations. After the introduction of a p-triphenyl polymer into the main chain, a clear hydrophilic-hydrophobic phase separation structure was constructed within the membrane, forming a continuous and interconnected ion transport channel to improve ion transport efficiency. Moreover, the molecular chains of the cross-linked AEMs change from chain-like to network-like, and the tighter binding between each molecule increases the tensile strength. The special structure of the six-membered ring makes PIP have a significant constraint effect; when nucleophilic substitution and Hoffman elimination occur at the α and β positions, the required transition state potential energy increases, making the reaction difficult to occur and improving the alkaline stability of the polymer membrane. The SEBS-C6-PIP-15%PTP membrane has the best mechanical properties (Ts = 38.79 MPa, Eb = 183.09% at 80 °C, 100% RH), the highest ion conductivity (102.02 mS. cm-1 at 80 °C), and the best alkaline stability (6.23% degradation at 80 °C in a 2 M NaOH solution for 1400 h). It can be seen that organic-organic covalent cross-linking is an effective means to improve the comprehensive performance of AEMs.
Collapse
Affiliation(s)
- Fanghui Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhaonan Sun
- China Fire and Rescue Institute, Beijing 102201, China
| | - Hanfei Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
4
|
Choi J, Min K, Mo YH, Han SB, Kim TH. Understanding the Effect of Triazole on Crosslinked PPO–SEBS-Based Anion Exchange Membranes for Water Electrolysis. Polymers (Basel) 2023; 15:polym15071736. [PMID: 37050350 PMCID: PMC10098533 DOI: 10.3390/polym15071736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
For anion exchange membrane water electrolysis (AEMWE), two types of anion exchange membranes (AEMs) containing crosslinked poly(phenylene oxide) (PPO) and poly(styrene ethylene butylene styrene) (SEBS) were prepared with and without triazole. The impact of triazole was carefully examined. In this work, the PPO was crosslinked with the non-aryl ether-type SEBS to take advantage of its enhanced chemical stability and phase separation under alkaline conditions. Compared to their triazole-free counterpart, the crosslinked membranes made with triazole had better hydroxide-ion conductivity because of the increased phase separation, which was confirmed by X-ray diffraction (XRD) and atomic force microscopy (AFM). Moreover, they displayed improved mechanical and alkaline stability. Under water electrolysis (WE) conditions, a triazole-containing crosslinked PPO–SEBS membrane electrode assembly (MEA) was created using IrO2 as the anode and a Pt/C catalyst as the cathode. This MEA displayed a current density of 0.7 A/cm2 at 1.8 V, which was higher than that of the MEA created with the triazole-free counterpart. Our study indicated that the crosslinked PPO–SEBS membrane containing triazoles had improved chemo-physical and electrical capabilities for WE because of the strong hydrogen bonding between triazole and water/OH−.
Collapse
Affiliation(s)
- Jiyong Choi
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyungwhan Min
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Hwan Mo
- Boyaz Energy, 165 Gasandigital 2-ro, Geumcheon-gu, Seoul 08504, Republic of Korea
| | - Sang-Beom Han
- Boyaz Energy, 165 Gasandigital 2-ro, Geumcheon-gu, Seoul 08504, Republic of Korea
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea
- Correspondence: ; Tel.: +82-32-8358232
| |
Collapse
|
5
|
Yang J, Chen Q, Afsar NU, Ge L, Xu T. Poly(alkyl-biphenyl pyridinium)-Based Anion Exchange Membranes with Alkyl Side Chains Enable High Anion Permselectivity and Monovalent Ion Flux. MEMBRANES 2023; 13:188. [PMID: 36837691 PMCID: PMC9967815 DOI: 10.3390/membranes13020188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Poly(alkyl-biphenyl pyridinium)-based anion exchange membranes with alkyl side chains were synthesized for permselective anion separation. By altering the length of the grafted side chain, the hydrophilicity and other attributes of the membranes could be controlled. The QDPAB-C5 membrane with the best comprehensive performance exhibited a Cl- ion flux of 3.72 mol m-2 h-1 and a Cl-/SO42- permselectivity of 15, which are significantly better than the commercial Neosepta ACS membrane. The QDPAB-C5 membranes with distinct microscopic phase separation structures formed interconnected hydrophilic/hydrophobic ion channels and exhibited excellent ion flux and permselectivity for other anionic systems (NO3-/SO42-, Br-/SO42-, F-/SO42-, NO3-/Cl-, Br-/Cl-, and F-/Cl-) as well. Furthermore, the influence of alkyl side chain length on the membranes' ion flux and permselectivity in electrodialysis was investigated, which may be attributed to the alterations in ion channels and hydrophobic regions of the membranes. This work provides an effective strategy for the development of monovalent anion permselective membranes.
Collapse
Affiliation(s)
- Jin Yang
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Qian Chen
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Noor Ul Afsar
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|