1
|
Li F, Mei S, Ye X, Yuan H, Li X, Tan J, Zhao X, Wu T, Chen X, Wu F, Xiang Y, Pan H, Huang M, Xue Z. Enhancing Lithium-Sulfur Battery Performance with MXene: Specialized Structures and Innovative Designs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404328. [PMID: 39052873 PMCID: PMC11423101 DOI: 10.1002/advs.202404328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Established in 1962, lithium-sulfur (Li-S) batteries boast a longer history than commonly utilized lithium-ion batteries counterparts such as LiCoO2 (LCO) and LiFePO4 (LFP) series, yet they have been slow to achieve commercialization. This delay, significantly impacting loading capacity and cycle life, stems from the long-criticized low conductivity of the cathode and its byproducts, alongside challenges related to the shuttle effect, and volume expansion. Strategies to improve the electrochemical performance of Li-S batteries involve improving the conductivity of the sulfur cathode, employing an adamantane framework as the sulfur host, and incorporating catalysts to promote the transformation of lithium polysulfides (LiPSs). 2D MXene and its derived materials can achieve almost all of the above functions due to their numerous active sites, external groups, and ease of synthesis and modification. This review comprehensively summarizes the functionalization advantages of MXene-based materials in Li-S batteries, including high-speed ionic conduction, structural diversity, shuttle effect inhibition, dendrite suppression, and catalytic activity from fundamental principles to practical applications. The classification of usage methods is also discussed. Finally, leveraging the research progress of MXene, the potential and prospects for its novel application in the Li-S field are proposed.
Collapse
Affiliation(s)
- Fei Li
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| | - Shijie Mei
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xing Ye
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Haowei Yuan
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xiaoqin Li
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Jie Tan
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xiaoli Zhao
- School of Materials Science and EngineeringXihua UniversityChengdu610039China
| | - Tongwei Wu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xiehang Chen
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| | - Fang Wu
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| | - Yong Xiang
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| | - Hong Pan
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Ming Huang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Zhiyu Xue
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Frontier Center of Energy Distribution and IntegrationTianfu Jiangxi LabChengdu641419China
| |
Collapse
|
2
|
Li Y, Yang R, Xie J, Li J, Huang H, Liang X, Huang D, Lan Z, Liu H, Li G, Xu S, Guo J, Zhou W. Potassium Ion-Assisted Self-Assembled MXene-K-CNT Composite as High-Quality Sulfur-Loaded Hosts for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39771-39783. [PMID: 39028897 DOI: 10.1021/acsami.4c04919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
We successfully synthesized hybrid MXene-K-CNT composites composed of alkalized two-dimensional (2D) metal carbide and carbon nanotubes (CNTs), which were employed as host materials for lithium-sulfur (Li-S) battery cathodes. The unique three-dimensional (3D) intercalated structure through electrostatic interactions by K+ ions in conjunction with the scaffolding effect provided by CNTs effectively inhibited the self-stacking of MXene nanosheets, resulting in an enhanced specific surface area (SSA) and ion transport capability. Moreover, the addition of CNTs and in situ-grown TiO2 considerably improved the conductivity of the cathode material. K+ ion etching created a more hierarchical porous structure in MXene, which further enhanced the SSA. The 3D framework effectively confined S embedded between nanosheet layers and suppressed volume changes of the cathode composite during charging/discharging processes. This combination of CNTs and alkalized nanosheets functioned as a physical and chemical dual adsorption system for lithium polysulfides (LiPSs). When subjected to a high current at 1.0C, S@MXene-K-0.5CNT with S-loaded of 1.2 mg cm-2 had an initial capacity of 919.6 mAh g-1 and capacity decay rate of merely 0.052% per cycle after 1000 cycles. Moreover, S@MXene-K-0.5CNT maintained good cycling stability even at a high current of up to 5.0C. These impressive results highlight the potential of alkalized 2D MXene nanosheets intercalated with CNTs as highly promising cathode materials for Li-S batteries. The study findings also have prospects for the development of next-generation Li-S batteries with high energy density and prolonged lifespans.
Collapse
Affiliation(s)
- Yaoying Li
- Guangxi Novel Battery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Ruoxi Yang
- Guangxi Novel Battery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Jiawei Xie
- Guangxi Novel Battery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Jia Li
- Guangxi Novel Battery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Haifu Huang
- Guangxi Novel Battery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China
| | - Xianqing Liang
- Guangxi Novel Battery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China
| | - Dan Huang
- Guangxi Novel Battery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China
| | - Zhiqiang Lan
- Guangxi Novel Battery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China
| | - Haizhen Liu
- Guangxi Novel Battery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China
| | - Guangxu Li
- Guangxi Novel Battery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China
| | - Shuaikai Xu
- Guangxi Novel Battery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China
| | - Jin Guo
- Guangxi Novel Battery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China
| | - Wenzheng Zhou
- Guangxi Novel Battery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
3
|
Sandhu ZA, Imtiaz K, Raza MA, Ashraf A, Tubassum A, Khan S, Farwa U, Bhalli AH, Al-Sehemi AG. Beyond graphene: exploring the potential of MXene anodes for enhanced lithium-sulfur battery performance. RSC Adv 2024; 14:20032-20047. [PMID: 38911835 PMCID: PMC11191053 DOI: 10.1039/d4ra02704c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
The high theoretical energy density of Li-S batteries makes them a viable option for energy storage systems in the near future. Considering the challenges associated with sulfur's dielectric properties and the synthesis of soluble polysulfides during Li-S battery cycling, the exceptional ability of MXene materials to overcome these challenges has led to a recent surge in the usage of these materials as anodes in Li-S batteries. The methods for enhancing anode performance in Li-S batteries via the use of MXene interfaces are thoroughly investigated in this study. This study covers a wide range of techniques such as surface functionalization, heteroatom doping, and composite structure design for enhancing MXene interfaces. Examining challenges and potential downsides of MXene-based anodes offers a thorough overview of the current state of the field. This review encompasses recent findings and provides a thorough analysis of advantages and disadvantages of adding MXene interfaces to improve anode performance to assist researchers and practitioners working in this field. This review contributes significantly to ongoing efforts for the development of reliable and effective energy storage solutions for the future.
Collapse
Affiliation(s)
- Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Kainat Imtiaz
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Adnan Ashraf
- Department of Chemistry, The University of Lahore Lahore Pakistan
| | - Areej Tubassum
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Sajawal Khan
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Umme Farwa
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Ali Haider Bhalli
- Department of Physics, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University Abha 61413 Saudi Arabia
| |
Collapse
|
6
|
Venezia E, Salimi P, Chauque S, Proietti Zaccaria R. Sustainable Synthesis of Sulfur-Single Walled Carbon Nanohorns Composite for Long Cycle Life Lithium-Sulfur Battery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3933. [PMID: 36432219 PMCID: PMC9699005 DOI: 10.3390/nano12223933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Lithium-sulfur batteries are considered one of the most appealing technologies for next-generation energy-storage devices. However, the main issues impeding market breakthrough are the insulating property of sulfur and the lithium-polysulfide shuttle effect, which cause premature cell failure. To face this challenge, we employed an easy and sustainable evaporation method enabling the encapsulation of elemental sulfur within carbon nanohorns as hosting material. This synthesis process resulted in a morphology capable of ameliorating the shuttle effect and improving the electrode conductivity. The electrochemical characterization of the sulfur-carbon nanohorns active material revealed a remarkable cycle life of 800 cycles with a stable capacity of 520 mA h/g for the first 400 cycles at C/4, while reaching a value around 300 mAh/g at the 750th cycle. These results suggest sulfur-carbon nanohorn active material as a potential candidate for next-generation battery technology.
Collapse
Affiliation(s)
- Eleonora Venezia
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Pejman Salimi
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Susana Chauque
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Remo Proietti Zaccaria
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department of Physics, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|