1
|
Zhao Y, Yang C, Zhong H, Li L, Fan J. Solvothermal Self-Assembly of Hollow Square-Tubular Polyimides for Aqueous Batteries. SMALL METHODS 2025:e2500251. [PMID: 40302449 DOI: 10.1002/smtd.202500251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/17/2025] [Indexed: 05/02/2025]
Abstract
In this study, a straightforward and environmentally benign solvothermal method for synthesizing hollow square-tubular polyimides (HST-PIs) is introduced. The process utilizes 1,4,5,8-naphthalenetetracarboxylic anhydride and urea as reactants, replacing traditional toxic organic solvents with water and ethanol. This investigation explores the effects of various reaction conditions, such as the water-to-ethanol volume ratio, reaction time, and temperature, on product morphology, resulting in distinct structures like sheets, columns, and layers. Notably, hollow square-tubular polyimides (HST-PIs) are synthesized under specific conditions: a 2:1 water-to-ethanol volume ratio, 24 h reaction time, and 200 °C temperature. This study attributes self-assembly to three primary non-covalent interactions: hydrogen bonding, π-π stacking, and hydrophobic interactions. The gel permeation chromatography (GPC) analysis indicates that the PIs molecular weight predominantly ranges from 10 000 to 15 000. As an electrode material, hollow square tubular polyimides (HST-PIs) exhibit an initial discharge capacity of 297.9 mAh·g-1 at a current rate of 0.1 C, with a coulombic efficiency of 79%. After ten cycles, the coulombic efficiency improves to 97% and maintains above 98% in the subsequent cycles. This study presents an innovative and environmentally friendly method for the molecular self-assembly of hollow tubular organic polymers.
Collapse
Affiliation(s)
- Ya Zhao
- College of Environmental and Chemical Engineering, Dalian University, Dalian, Liaoning, 116622, China
| | - Chaoqiao Yang
- College of Environmental and Chemical Engineering, Dalian University, Dalian, Liaoning, 116622, China
| | - Hexiang Zhong
- College of Environmental and Chemical Engineering, Dalian University, Dalian, Liaoning, 116622, China
| | - Lin Li
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou, 553004, China
| | - Jiaxin Fan
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou, 553004, China
| |
Collapse
|
2
|
Wu S, Taylor M, Guo H, Wang S, Han C, Vongsvivut J, Meyer Q, Sun Q, Ho J, Zhao C. A High-capacity Benzoquinone Derivative Anode for All-organic Long-cycle Aqueous Proton Batteries. Angew Chem Int Ed Engl 2024; 63:e202412455. [PMID: 39390734 DOI: 10.1002/anie.202412455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Quinone compounds, with the ability to uptake protons, are promising electrodes for aqueous batteries. However, their applications are limited by the mediocre working potential range and inferior rate performance. Herein, we examined quinones bearing different substituents, and for the first time introduce tetraamino-1,4-benzoquinone (TABQ) as anode material for proton batteries. The strong electron-donating amino groups can effectively narrow the band gap and lower the redox potentials of quinone materials. The protonation of amino groups and the amorphization of structure result in the formation of an intermolecular hydrogen-bond network, supporting Grotthuss-type proton conduction in the electrode with a low activation energy of 192.7 meV. The energy storage mechanism revealed by operando FT-IR and ex situ XPS features a reversible quinone-hydroquinone conversion during cycling. TABQ demonstrates a remarkable specific capacity of 307 mAh g-1 at 1 A g-1, which is one of the highest among organic proton electrodes. An all-organic proton battery of TABQ//TCBQ has also been developed, achieving exceptional stability of 3500 cycles at room temperature and excellent performance at sub-zero temperature.
Collapse
Affiliation(s)
- Sicheng Wu
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mackenzie Taylor
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Haocheng Guo
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuhao Wang
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chen Han
- School of Chemical Engineering, the, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) beamline, ANSTO - Australian Synchrotron, Clayton, VIC, 3168, Australia
| | - Quentin Meyer
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qian Sun
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Junming Ho
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, the, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Robertson M, Qian J, Qiang Z. Polymer Sorbent Design for the Direct Air Capture of CO 2. ACS APPLIED POLYMER MATERIALS 2024; 6:14169-14189. [PMID: 39697843 PMCID: PMC11650649 DOI: 10.1021/acsapm.3c03199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 12/20/2024]
Abstract
Anthropogenic activities have resulted in enormous increases in atmospheric CO2 concentrations particularly since the onset of the Industrial Revolution, which have potential links with increased global temperatures, rising sea levels, increased prevalence, and severity of natural disasters, among other consequences. To enable a carbon-neutral and sustainable society, various technologies have been developed for CO2 capture from industrial process streams as well as directly from air. Here, direct air capture (DAC) represents an essential need for reducing CO2 concentration in the atmosphere to mitigate the negative consequences of greenhouse effects, involving systems that can reversibly adsorb and release CO2, in which polymers have played an integral role. This work provides insights into the development of polymer sorbents for DAC of CO2, specifically from the perspective of material design principles. We discuss how physical properties and chemical identities of amine-containing polymers can impact their ability to uptake CO2, as well as be efficiently regenerated. Additionally, polymers which use ionic interactions to react with CO2 molecules, such as poly(ionic liquids), are also common DAC sorbent materials. Finally, a perspective is provided on the future research and technology opportunities of developing polymer-derived sorbents for DAC.
Collapse
Affiliation(s)
- Mark Robertson
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jin Qian
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Zhe Qiang
- School of
Polymer Science and Engineering, The University
of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
4
|
He J, Shi M, Wang H, Liu H, Yang J, Yan C, Zhao J, Yang JL, Wu XL. Ladder-Type Redox-Active Polymer Achieves Ultra-Stable and Fast Proton Storage in Aqueous Proton Batteries. Angew Chem Int Ed Engl 2024; 63:e202410568. [PMID: 39083345 DOI: 10.1002/anie.202410568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 10/25/2024]
Abstract
A ladder-type rigid-coplanar polymer with highly ordered molecular arrangement has been designed via a covalent cycloconjugation conformational strategy. Benefitting from the extended π-electron delocalization in the highly aromatic ladder-type polymeric backbone, the prepared polymer exhibits fast intra-chain charge transport along the polymeric chain, realizing extraordinary proton-storage capability in aqueous proton batteries.Affordable and safe aqueous proton batteries (APBs) with unique "Grotthuss mechanism," are very significant for advancing carbon neutrality initiatives. While organic polymers offer a robust and adaptable framework that is well-suited for APB electrodes, the limited proton-storage redox capacity has constrained their broader application. Herein, a ladder-type polymer (PNMZ) has been designed via a covalent cycloconjugation conformational strategy that exhibits optimized electronic structure and fast intra-chain charge transport within the high-aromaticity polymeric skeleton. As a result, the polymer exhibits exceptional proton-storage redox kinetics, which are evidenced by in-operando monitoring techniques and theoretical calculations. It achieves a remarkable proton-storage capacity of 189 mAh g-1 at 2 A g-1 and excellent long-term cycling stability, with approximately 97.8 % capacity retention over 10,000 cycles. Finally, a high-performance all-polymer APB device has been successfully constructed with a desirable capacity retention of 99.7 % after 6,000 cycles and high energy density of 56.3 Wh kg-1.
Collapse
Affiliation(s)
- Jing He
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Minjie Shi
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Houxiang Wang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - He Liu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Jun Yang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Chao Yan
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Jingxin Zhao
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Jia-Lin Yang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Department of Physics, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Department of Physics, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
5
|
Wang C, He D, Wang H, Guo J, Bao Z, Feng Y, Hu L, Zheng C, Zhao M, Wang X, Wang Y. Symmetrical Design of Biphenazine Derivative Anode for Proton Ion Batteries with High Voltage and Long-Term Cycle Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401314. [PMID: 38877663 PMCID: PMC11321615 DOI: 10.1002/advs.202401314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/19/2024] [Indexed: 06/16/2024]
Abstract
Organic anodes have emerged as a promising energy storage medium in proton ion batteries (PrIBs) due to their ability to reversibly accommodate non-metallic proton ions. Nevertheless, the currently available organic electrodes often encounter dissolution issues, leading to a decrease in long-cycle stability. In addition, the inherent potential of the organic anode is generally relatively high, resulting in low cell voltage of assembled PrIBs (<1.0 V). To address these challenges, a novel long-period stable, low redox potential biphenylzine derivative, [2,2'-biphenazine]-7,7'-tetraol (BPZT) is explored, from the perspective of molecular symmetry and solubility, in conjunction with the effect of the molecular frontier orbital energy levels on its redox potential. Specifically, BPZT exhibited a low potential of 0.29 V (vs SHE) and is virtually insoluble in 2 m H2SO4 electrolyte during cycling. When paired with MnO2@GF or PbO2 cathodes, the resulting PrIBs achieve cell voltages of 1.07 V or 1.44 V, respectively, and maintain a high capacity retention of 90% over 20000 cycles. Additionally, these full batteries can operate stably at a high mass loading of 10 mgBPZT cm-2, highlighting their potential toward long-term energy storage applications.
Collapse
Affiliation(s)
- Caixing Wang
- Institute of Innovation Materials and EnergySchool of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225002China
| | - Dunyong He
- Institute of Innovation Materials and EnergySchool of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225002China
| | - Huaizhu Wang
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Jiandong Guo
- Institute of Innovation Materials and EnergySchool of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225002China
| | - Zhuoheng Bao
- School of Materials Science and EngineeringSoutheast UniversityNanjingJiangsu211189China
| | - Yuge Feng
- School of Materials Science and EngineeringSoutheast UniversityNanjingJiangsu211189China
| | - Linfeng Hu
- School of Materials Science and EngineeringSoutheast UniversityNanjingJiangsu211189China
| | - Chenxi Zheng
- Institute of Innovation Materials and EnergySchool of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225002China
| | - Mengfan Zhao
- Institute of Innovation Materials and EnergySchool of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225002China
| | - Xuemei Wang
- Institute of Innovation Materials and EnergySchool of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225002China
| | - Yanrong Wang
- Institute of Innovation Materials and EnergySchool of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225002China
| |
Collapse
|
6
|
Tong Y, Wei Y, Song AJ, Ma Y, Yang J. Polyaniline/Tungsten Trioxide Organic-Inorganic Hybrid Anode for Aqueous Proton Batteries. Chemistry 2024; 30:e202401257. [PMID: 38709195 DOI: 10.1002/chem.202401257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
Aqueous proton batteries have received increasing attention due to their outstanding rate performance, stability and high capacity. However, the selection of anode materials in strongly acidic electrolytes poses a challenge in achieving high-performance aqueous proton batteries. This study optimized the proton reaction kinetics of layered metal oxide WO3 by introducing interlayer structural water and coating polyaniline (PANI) on its surface to prepare organic-inorganic hybrid material (WO3 ⋅ 2H2O@PANI). We constructed an aqueous proton battery with WO3 ⋅ 2H2O@PANI anode and MnO2@GF cathode. After 1500 cycles at a current density of 10 A g-1, the capacity retention rate can still reach 80.2 %. These results can inspire the development of new aqueous proton batteries.
Collapse
Affiliation(s)
- Yuhao Tong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuan Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - AJing Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
7
|
Liu X, Yang Z, Lu Y, Tao Z, Chen J. Recent Advances in Aqueous Non-Metallic Ion Batteries with Organic Electrodes. SMALL METHODS 2024; 8:e2300688. [PMID: 37712198 DOI: 10.1002/smtd.202300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Aqueous non-metallic ion batteries have attracted much attention in recent years owing to their fast kinetics, long cycle life, and low manufacture cost. Organic compounds with flexible structural designability are promising electrode materials for aqueous non-metallic ion batteries. In this review, the recent progress of organic electrode materials is systematically summarized for aqueous non-metallic ion batteries with the focus on the interaction between non-metallic ion charge carriers and organic electrode host materials. Both the cations (proton, ammonium ion, and methyl viologen ions) and anions (chloridion, sulfate ion, perchlorate ion, trifluoromethanesulfonate and trifluoromethanesulfonimide ion) storage are discussed. Moreover, the design strategies toward improving the comprehensive performance of organic electrode materials in aqueous non-metallic ion batteries will be summarized. More organic electrode materials with new reaction mechanisms need to be explored to meet the diverse demands of aqueous non-metallic ion batteries with different charge carriers in the future. This review provides insights into developing high-performance organic electrodes for aqueous non-metallic ion batteries.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhuo Yang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong Lu
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhanliang Tao
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Zhao Y, Yang C, Zhong H, Li L, Hu J, Fan J. Green synthesis of polyimide by using an ethanol solvothermal method for aqueous zinc batteries. RSC Adv 2024; 14:15507-15514. [PMID: 38741960 PMCID: PMC11090015 DOI: 10.1039/d4ra02390k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Polyimides (PIs) are welcomed by battery researchers because of their exceptional heat resistance, structural design versatility, and ion-bearing capabilities. However, most of the reported PIs are synthesized by using toxic and hazardous reagents, such as ethylenediamine, p-phenylenediamine, 1-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), etc., which are not conducive to environmentally friendly development. In this paper, we aim at employing green solvents and raw materials to prepare PIs using a facile solvothermal method. The reactants are urea and 1,4,5,8-naphthalene tetracarboxylic acid dianhydride (NTCDA). The solvents include pure water, pure ethanol, or water-ethanol mixed solvent. The volume ratio of ethanol in the mixed solvent is regulated to obtain the optimum synthesis condition. Depending on the proportion of ethanol, the polyimide products are labeled as U-PI-0, U-PI-50, U-PI-100, etc. The polymerization degree and structure of synthesized PIs are characterized by gel permeation chromatography (GPC), X-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The results indicate that U-PIs exhibit diverse morphological features, including small fragmented, strip-like, and sheet-like structures, and have relative molecular weights ranging from 7500 to 83 000. Notably, the sheet-like U-PI-100 possesses the largest specific surface area, reaching up to 4.20 m2 g-1. When employed as an electrode material in aqueous zinc batteries, U-PI-100 demonstrates superior electrochemical performance compared to others. At a charge-discharge rate of 0.05C, the initial charge/discharge capacity of U-PI-100 is measured to be 314.2/443.7 mA h g-1.
Collapse
Affiliation(s)
- Ya Zhao
- College of Environmental and Chemical Engineering, Dalian University Dalian 116622 Liaoning China
| | - Chaoqiao Yang
- College of Environmental and Chemical Engineering, Dalian University Dalian 116622 Liaoning China
| | - Hexiang Zhong
- College of Environmental and Chemical Engineering, Dalian University Dalian 116622 Liaoning China
| | - Lin Li
- School of Chemistry and Materials Engineering, Liupanshui Normal University Liupanshui 553004 Guizhou China
| | - Jiangliang Hu
- School of Chemistry and Materials Engineering, Liupanshui Normal University Liupanshui 553004 Guizhou China
| | - Jiaxin Fan
- School of Chemistry and Materials Engineering, Liupanshui Normal University Liupanshui 553004 Guizhou China
| |
Collapse
|
9
|
Tong Y, Wei Y, Song A, Ma Y, Yang J. Organic Electrode Materials for Dual-Ion Batteries. CHEMSUSCHEM 2024; 17:e202301468. [PMID: 38116879 DOI: 10.1002/cssc.202301468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Organic materials are widely used in various energy storage devices due to their renewable, environmental friendliness and adjustable structure. Dual-ion batteries (DIBs), which use organic materials as the electrodes, are an attractive alternative to conventional lithium-ion batteries for sustainable energy storage devices owing to the advantages of low cost, environmental friendliness, and high operating voltage. To date, various organic electrode materials have been applied in DIBs. In this review, we present the development of DIBs with a following brief introduction of characteristics and mechanisms of organic materials. The latest progress in the application of organic materials as anode and cathode materials for DIBs is mainly reviewed. Finally, we also discussed the challenges and prospects of organic electrode materials for DIBs.
Collapse
Affiliation(s)
- Yuhao Tong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuan Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ajing Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
10
|
Nimkar A, Bergman G, Ballas E, Tubul N, Levi N, Malchik F, Kukurayeve I, Chae MS, Sharon D, Levi M, Shpigel N, Wang G, Aurbach D. Polyimide Compounds For Post-Lithium Energy Storage Applications. Angew Chem Int Ed Engl 2023; 62:e202306904. [PMID: 37650332 DOI: 10.1002/anie.202306904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
The exploration of cathode and anode materials that enable reversible storage of mono and multivalent cations has driven extensive research on organic compounds. In this regard, polyimide (PI)-based electrodes have emerged as a promising avenue for the development of post-lithium energy storage systems. This review article provides a comprehensive summary of the syntheses, characterizations, and applications of PI compounds as electrode materials capable of hosting a wide range of cations. Furthermore, the review also delves into the advancements in PI based solid state batteries, PI-based separators, current collectors, and their effectiveness as polymeric binders. By highlighting the key findings in these areas, this review aims at contributing to the understanding and advancement of PI-based structures paving the way for the next generation of energy storage systems.
Collapse
Affiliation(s)
- Amey Nimkar
- Department of Chemistry and BINA-, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Gil Bergman
- Department of Chemistry and BINA-, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Elad Ballas
- Department of Chemistry and BINA-, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Nophar Tubul
- Department of Chemistry and BINA-, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Noam Levi
- Department of Chemistry and BINA-, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Fyodor Malchik
- Center of Physical-Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, Almaty, 050012, Kazakhstan
| | - Idan Kukurayeve
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Munseok S Chae
- Department of Nanotechnology Engineering, Pukyong National University, Busan, 48547, Republic of Korea
| | - Daniel Sharon
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Mikhael Levi
- Department of Chemistry and BINA-, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Netanel Shpigel
- Department of Chemical Sciences, Ariel University, Kiryat Hamada 3, 44837, Ariel, Israel
| | - Guoxiu Wang
- Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Doron Aurbach
- Department of Chemistry and BINA-, BIU Centre for Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
11
|
Ma Y, Wei Y, Han W, Tong Y, Song AJ, Zhang J, Li H, Li X, Yang J. Proton Intercalation/De-intercalation Chemistry in Phenazine-based Anode for Hydronium-ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202314259. [PMID: 37845195 DOI: 10.1002/anie.202314259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Hydronium-ion batteries have received significant attention owing to the merits of extraordinary sustainability and excellent rate abilities. However, achieving high-performance hydronium-ion batteries remains a challenge due to the inferior properties of anode materials in strong acid electrolyte. Herein, a hydronium-ion battery is constructed which is based on a diquinoxalino [2,3-a:2',3'-c] phenazine (HATN) anode and a MnO2 @graphite felt cathode in a hybrid acidic electrolyte. The fast kinetics of hydronium-ion insertion/extraction into HATN electrode endows the HATN//MnO2 @GF battery with enhanced electrochemical performance. This battery exhibits an excellent rate performance (266 mAh g-1 at 0.5 A g-1 , 97 mAh g-1 at 50 A g-1 ), attractive energy density (182.1 Wh kg-1 ) and power density (31.2 kW kg-1 ), along with long-term cycle stability. These results shed light on the development of advanced hydronium-ion batteries.
Collapse
Affiliation(s)
- Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yuan Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenjuan Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yuhao Tong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - AJing Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jianhua Zhang
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Hongbao Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University, Hefei, 230601, P. R. China
| | - Xifei Li
- Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials, Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
12
|
Singh S, Narasimhappa P, Khan NA, Chauhan V, Shehata N, Behera SK, Singh J, Ramamurthy PC. Effective voltammetric tool for Nano-detection of triazine herbicide (1-Chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine) by naphthalene derivative. ENVIRONMENTAL RESEARCH 2023; 236:116808. [PMID: 37579962 DOI: 10.1016/j.envres.2023.116808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/07/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
The development and operation of a nanosensor for detecting the poisonous 1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine (Atrazine) are described in this study for the first time. The carbon electrode (CE) surface was modified with cysteine-substituted naphthalene diimide to create this sensitive platform. The developed nanosensor (NDI-cys/GCE) was evaluated for its ability to sense Atrazine using differential pulse voltammetry and cyclic voltammetry. To achieve the best response from the target analyte, the effects of several parameters were examined to optimize the conditions. The cysteine-substituted naphthalene diimide significantly improved the signals of the Atrazine compared to bare GCE due to the synergistic activity of substituted naphthalene diimide and cysteine molecules. Under optimal conditions, atrazine detection limits at the (NDI-cys/GCE) were reported to be 94 nM with a linear range of 10-100 μM. The developed sensing platform also showed positive results when used to detect the atrazine herbicide in real tap water, wastewater, and milk samples. Furthermore, a reasonable recovery rate for real-time studies, repeatability, and stability revealed that the developed electrochemical platform could be used for sample analysis.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Pavithra Narasimhappa
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Vishakha Chauhan
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - S K Behera
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| |
Collapse
|
13
|
Shi M, Das P, Wu ZS, Liu TG, Zhang X. Aqueous Organic Batteries Using the Proton as a Charge Carrier. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302199. [PMID: 37253345 DOI: 10.1002/adma.202302199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Indexed: 06/01/2023]
Abstract
Benefiting from the merits of low cost, nonflammability, and high operational safety, aqueous rechargeable batteries have emerged as promising candidates for large-scale energy-storage applications. Among various metal-ion/non-metallic charge carriers, the proton (H+ ) as a charge carrier possesses numerous unique properties such as fast proton diffusion dynamics, a low molar mass, and a small hydrated ion radius, which endow aqueous proton batteries (APBs) with a salient rate capability, a long-term life span, and an excellent low-temperature electrochemical performance. In addition, redox-active organic molecules, with the advantages of structural diversity, rich proton-storage sites, and abundant resources, are considered attractive electrode materials for APBs. However, the charge-storage and transport mechanisms of organic electrodes in APBs are still in their infancy. Therefore, finding suitable electrode materials and uncovering the H+ -storage mechanisms are significant for the application of organic materials in APBs. Herein, the latest research progress on organic materials, such as small molecules and polymers for APBs, is reviewed. Furthermore, a comprehensive summary and evaluation of APBs employing organic electrodes as anode and/or cathode is provided, especially regarding their low-temperature and high-power performances, along with systematic discussions for guiding the rational design and the construction of APBs based on organic electrodes.
Collapse
Affiliation(s)
- Mangmang Shi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Göteborg, SE-412 96, Sweden
- School of physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Tie-Gen Liu
- The Ministry of Education Key Laboratory of Optoelectronic Information Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoyan Zhang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, Göteborg, SE-412 96, Sweden
| |
Collapse
|
14
|
Emerging organic electrode materials for aqueous proton batteries. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|