1
|
Fan Y, Zhang J, Han J, Zhang M, Bao W, Su H, Wang N, Zhang P, Luo Z. In situ self-reconstructed hierarchical bimetallic oxyhydroxide nanosheets of metallic sulfides for high-efficiency electrochemical water splitting. MATERIALS HORIZONS 2024; 11:1797-1807. [PMID: 38318724 DOI: 10.1039/d3mh02090h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The advancement of economically efficient electrocatalysts for alkaline water oxidation based on transition metals is essential for hydrogen production through water electrolysis. In this investigation, a straightforward one-step solvent method was utilized to spontaneously cultivate bimetallic sulfide S-FeCo1 : 1/NIF on the surface of a nickel-iron foam (NIF). Capitalizing on the synergistic impact between the bimetallic constituents and the highly active species formed through electrochemical restructuring, S-FeCo1 : 1/NIF exhibited remarkable oxygen evolution reaction (OER) performance, requiring only a 310 mV overpotential based on 500 mA cm-2 current density. Furthermore, it exhibited stable operation at 200 mA cm-2 for 275 h. Simultaneously, the catalyst demonstrated excellent hydrogen evolution reaction (HER) and overall water-splitting capabilities. It only requires an overpotential of 191 mV and a potential of 1.81 V to drive current densities of 100 and 50 mA cm-2. Density functional theory (DFT) calculations were also employed to validate the impact of the bimetallic synergistic effect on the catalytic activity of sulfides. The results indicate that the coupling between bimetallic components effectively reduces the energy barrier required for the rate-determining step in water oxidation, enhancing the stability and activity of bimetallic sulfides. The exploration of bimetallic coupling to improve the OER performance holds theoretical significance in the rational design of advanced electrocatalysts.
Collapse
Affiliation(s)
- Yaning Fan
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
| | - Junjun Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
| | - Jie Han
- National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Material Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, P. R. China.
| | - Mengyuan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Weiwei Bao
- National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Material Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, P. R. China.
| | - Hui Su
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, QC H3A 0B8, Canada
| | - Nailiang Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
| | - Pengfei Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Zhenghong Luo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
2
|
Wang L, Cheng Y, Xiong J, Zhao Z, Zhang D, Hu Z, Zhang H, Wu Q, Chen L. Sea urchin-like amorphous MgNiCo mixed metal hydroxide nanoarrays for efficient overall water splitting under industrial electrolytic conditions. Dalton Trans 2023; 52:3438-3448. [PMID: 36825845 DOI: 10.1039/d3dt00160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Exploring amorphous mixed transition metal hydroxide electrocatalysts with high performance and stability for overall water splitting is a difficult challenge under industrial electrolytic conditions. Herein, a sea urchin-like amorphous MgNiCo hydroxide (MgxNi1-xCo-OH, 0 < x < 1), self-assembled from nanowire arrays, is synthesized by the hydrothermal process. The synergistic effect between Mg and Ni/Co adjusts their crystal structure and morphology, which can improve the inherent activity and provide more active sites. Benefiting from the favorable structural features, Mg0.5Ni0.5Co-OH exhibits superior electrocatalytic oxygen and hydrogen evolution reaction (OER and HER) activity with a low overpotential of 277 and 110 mV (10 mA cm-2) in 1 M KOH at 25 °C. Furthermore, overpotentials of 239 and 197 mV are required to achieve a current density of 50 mA cm-2 for the OER and HER under simulated industrial electrolysis conditions (5 M KOH at 65 °C). Notably, Mg0.5Ni0.5Co-OH remarkably accelerates water splitting with a low voltage of 1.938 and 1.699 V for 50 mA cm-2 in 1 M KOH at 25 °C and 5 M KOH at 65 °C, respectively. This work presents a novel amorphous strategy to design and construct sea urchin-like mixed metal hydroxide bifunctional efficient electrocatalysts for industrial applications.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Yikun Cheng
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Jiahao Xiong
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Zhiwen Zhao
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Dingbo Zhang
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Zhiyan Hu
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Haoyu Zhang
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Qin Wu
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Long Chen
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| |
Collapse
|
3
|
Liu L, Li Y, Zhang Y, Shang X, Song C, Meng F. Ni3S2 thin-layer nanosheets coupled with Co9S8 nanoparticles anchored on 3D cross-linking composite structure CNT@MXene for high-performance asymmetric supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Deshmukh MA, Park SJ, Thorat HN, Bodkhe GA, Ramanavicius A, Ramanavicius S, Shirsat MD, Ha TJ. Advanced Energy Materials: Current Trends and Challenges in Electro- and Photo-Catalysts for H2O Splitting. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Cao W, Chen N, Zhao W, Xia Q, Du G, Xiong C, Li W, Tang L. Amorphous P-NiCoS@C nanoparticles derived from P-doped NiCo-MOF as electrode materials for high-performance hybrid supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Lifoka MO, Niu W, Liu G, Wu C, Li J. A sulfur defective Mn-doped Ni 3S 2-xnanosheet for enhanced overall water splitting. NANOTECHNOLOGY 2022; 33:485403. [PMID: 35921793 DOI: 10.1088/1361-6528/ac8680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Non-precious and stable electrocatalysts towards both oxygen and hydrogen evolution reaction (OER/HER) are essential for effective overall water splitting in alkaline solution. In this study, a sulfur defective and manganese-doped nickel sulfide nanosheet that uniformly grown on nickel foam substrate (Mn-Ni3S2-x@NF) is synthesized. In alkaline solution, the Mn-Ni3S2-x@NF showed a low overpotential of 76 and 110 mV for OER and HER at 10 mA cm-2, respectively, together exhibiting excellent stability for both OER and HER reaction. It was confirmed by the experimental results that sulfur defects and Mn-doping synergistically optimized the electronic structure of Mn-Ni3S2-xwith increased electrical conductivity and enhanced OER/HER activity. Moreover, amorphous nickel oxyhydroxide (NiOOH) was observed byin situRaman during the OER condition, suggesting NiOOH is the active phase for OER reaction. Furthermore, the electrolyzer assembled by Mn-Ni3S2-x@NF merely needs 1.46 V to reach 10 mA cm-2and shows good stability as well. This study provides a feasible way to prepare high-efficiency bifunctional catalysts for overall water splitting.
Collapse
Affiliation(s)
- Martine Otay Lifoka
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Weixing Niu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Guihua Liu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Changcheng Wu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Jingde Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| |
Collapse
|
7
|
Wu Z, Wang J, Li H, Cao L, Dong B. Boosting of Oxygen Evolution Reaction Performance through Defect and Lattice Distortion Engineering. NEW J CHEM 2022. [DOI: 10.1039/d2nj00104g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing efficient, stable, and inexpensive electrocatalyst for oxygen evolution reaction (OER) is significant for development and utilization of clean energy. Defects in electrocatalysts strongly impact their chemical properties and can...
Collapse
|