1
|
Ding L, Li D, Zhang S, Zhang Y, Zhao S, Du F, Yang F. Facile In Situ Building of Sulfonated SiO 2 Coating on Porous Skeletons of Lithium-Ion Battery Separators. Polymers (Basel) 2024; 16:2659. [PMID: 39339123 PMCID: PMC11435647 DOI: 10.3390/polym16182659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Polyolefin separators with worse porous structures and compatibilities mismatch the internal environment and deteriorate lithium-ion battery (LIB) combination properties. In this study, a sulfonated SiO2 (SSD) composited polypropylene separator (PP@SSD) is prepared to homogenize pore sizes and in situ-built SSD coatings on porous skeletons. Imported SSD uniformizes pore sizes owing to centralized interface distributions within casting films. Meanwhile, abundant cavitations enable the in situ SSD coating to facilely fix onto porous skeleton surfaces during separator fabrications, which feature simple techniques, low cost, environmental friendliness, and the capability for continuous fabrications. A sturdy SSD coating on the porous skeleton confines thermal shrinkages and offers a superior safety guarantee for LIBs. The abundant sulfonic acid groups of SSD endow PP@SSD with excellent electrolyte affinity, which lowers Li+ transfer barriers and optimizes interfacial compatibility. Therefore, assembled LIBs give the optimal C-rate capacity and cycling stability, holding a capacity retention of 82.7% after the 400th cycle at 0.5 C.
Collapse
Affiliation(s)
- Lei Ding
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Dandan Li
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Yuanjie Zhang
- Department of Chemistry and Biology, Liaocheng University Dongchang College, No. 266, North Outer Ring Road, Liaocheng 252001, China
| | - Shuyue Zhao
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Fanghui Du
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252000, China
| | - Feng Yang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
2
|
Wang H, Yin R, Chen X, Wu T, Bu Y, Yan H, Lin Q. Construction and Evaluation of Alginate Dialdehyde Grafted RGD Derivatives/Polyvinyl Alcohol/Cellulose Nanocrystals IPN Composite Hydrogels. Molecules 2023; 28:6692. [PMID: 37764467 PMCID: PMC10534451 DOI: 10.3390/molecules28186692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
To enhance the mechanical strength and cell adhesion of alginate hydrogel, making it satisfy the requirements of an ideal tissue engineering scaffold, the grafting of Arg-Gly-Asp (RGD) polypeptide sequence onto the alginate molecular chain was conducted by oxidation of sodium periodate and subsequent reduction amination of 2-methylpyridine borane complex (2-PBC) to synthesize alginate dialdehyde grafted RGD derivatives (ADA-RGD) with good cellular affinity. The interpenetrating network (IPN) composite hydrogels of alginate/polyvinyl alcohol/cellulose nanocrystals (ALG/PVA/CNCs) were fabricated through a physical mixture of ion cross-linking of sodium alginate (SA) with hydroxyapatite/D-glucono-δ-lactone (HAP/GDL), and physical cross-linking of polyvinyl alcohol (PVA) by a freezing/thawing method, using cellulose nanocrystals (CNCs) as the reinforcement agent. The effects of the addition of CNCs and different contents of PVA on the morphology, thermal stability, mechanical properties, swelling, biodegradability, and cell compatibility of the IPN composite hydrogels were investigated, and the effect of RGD grafting on the biological properties of the IPN composite hydrogels was also studied. The resultant IPN ALG/PVA/CNCs composite hydrogels exhibited good pore structure and regular 3D morphology, whose pore size and porosity could be regulated by adjusting PVA content and the addition of CNCs. By increasing the PVA content, the number of physical cross-linking points in PVA increased, resulting in greater stress support for the IPN composite hydrogels of ALG/PVA/CNCs and consequently improving their mechanical characteristics. The creation of the IPN ALG/PVA/CNCs composite hydrogels' physical cross-linking network through intramolecular or intermolecular hydrogen bonding led to improved thermal resistance and reduced swelling and biodegradation rate. Conversely, the ADA-RGD/PVA/CNCs IPN composite hydrogels exhibited a quicker degradation rate, attributed to the elimination of ADA-RGD by alkali. The results of the in vitro cytocompatibility showed that ALG/0.5PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels showed better proliferative activity in comparison with other composite hydrogels, while ALG/PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels displayed obvious proliferation effects, indicating that PVA, CNCs, and ADA-RGD with good biocompatibility were conducive to cell proliferation and differentiation for the IPN composite hydrogels.
Collapse
Affiliation(s)
- Hongcai Wang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ruhong Yin
- Hainan Hongta Cigarette Co., Ltd., Haikou 571100, China;
| | - Xiuqiong Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ting Wu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yanan Bu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
3
|
Huang H, Zhou Z, Qian C, Liu S, Chi Z, Xu J, Yue M, Zhang Y. Grafting Polyethyleneimine-Poly(ethylene glycol) Gel onto a Heat-Resistant Polyimide Nanofiber Separator for Improving Lithium-Ion Transporting Ability in Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37335981 DOI: 10.1021/acsami.3c01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
To improve the lithium-ion transporting ability in lithium-ion batteries, a high-performance polyimide-based lithium-ion battery separator (PI-mod) was prepared by chemically grafting poly(ethylene glycol) (PEG) onto the surface of a heat-resistant polyimide nanofiber matrix with the assistance of amino-rich polyethyleneimine (PEI). The resulted PEI-PEG polymer coating exhibited unique gel-like properties with an electrolyte uptake rate of 168%, an area resistance as low as 2.60 Ω·cm2, and an ionic conductivity up to 2.33 mS·cm-1, which are 3.5, 0.10, and 12.3 times that of the commercial separator Celgard 2320, respectively. Meanwhile, the heat-resistant polyimide skeleton can effectively avoid thermal shrinkage of the modified separator even after 200 °C treatment for 0.5 h, which ensures the safety of the battery working under extreme conditions. The modified PI separator possessed a high electrochemical stability window of 4.5 V. Compared with the batteries from the commercial separator Celgard 2320 and the pure polyimide matrix, the assembled coin cell with the PI-mod separator showed much better rate capabilities and capacity retention due to the high electrolyte affinity of the PEI-PEG polymer coating. The developed strategy of using the electrolyte-swollen polymer to modify the thermal-resistant separator network provides an efficient way for establishing high-power lithium-ion batteries with good safety performance.
Collapse
Affiliation(s)
- Haitao Huang
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuxin Zhou
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Shenzhen Yanyi New Materials Co Ltd., Shenzhen 518110, P. R. China
| | - Chao Qian
- Shenzhen Yanyi New Materials Co Ltd., Shenzhen 518110, P. R. China
| | - Siwei Liu
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenguo Chi
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiarui Xu
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Min Yue
- Shenzhen Yanyi New Materials Co Ltd., Shenzhen 518110, P. R. China
| | - Yi Zhang
- PCFM Laboratory, GD HPPC Laboratory, Guangdong Engineering Technology Research Centre for High-Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|