1
|
Wang M, Luo Y, Feng C, Wan J, Guo H, Yao G, Zhang H, Wang Y. Metalloid tellurium-induced electron-deficient NiFe alloys awakening efficient oxygen electroreduction. J Colloid Interface Sci 2025; 687:775-785. [PMID: 39986007 DOI: 10.1016/j.jcis.2025.02.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Transition metal alloys catalysts have been extensively studied in oxygen reduction reactions (ORR); however, their suboptimal catalytic activity presents a significant challenge. Modifying the local electronic configuration of the catalytic active site by heteroatom doping is an effective strategy to enhance the electrocatalytic performance. Herein, an ORR Te/NiFe@NCNFs electrocatalyst, featuring with Te modified NiFe alloys nanoparticles and anchored on N-doped carbon nanofibers (NCNFs), was constructed via a surface-modified synthesis strategy. The introduction of Te leads to electron transfer on the surface of Te/NiFe@NCNFs, forming an electron-deficient NiFe site with high catalytic activity. Theoretical calculations confirm that Te regulates an electron redistribution and reduces the d-band centers of Fe and Ni, which help to facilitate the desorption of ORR intermediate oxides. As a result, Te/NiFe@NCNFs exhibit a half-wave potential of 0.86 V, superior to that of Pt/C (0.84 V) and most reported modified-NiFe-based catalysts. When assembled into a zinc-air battery, Te/NiFe@NCNFs deliver remarkable power density of 158.8 mW cm-2-2 and specific capacity of 778.1 mA h gZn-1. The present study presents new insights into the modulation of electronic structure in transition metal alloys, providing a feasible and innovative approach for the design of unrivaled ORR electrocatalysts.
Collapse
Affiliation(s)
- Mi Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Yangjun Luo
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Chuanzhen Feng
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Jin Wan
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Han Guo
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Guangxu Yao
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| |
Collapse
|
2
|
Dias GDS, Costa JM, Almeida Neto AFD. Transition metal chalcogenides carbon-based as bifunctional cathode electrocatalysts for rechargeable zinc-air battery: An updated review. Adv Colloid Interface Sci 2023; 315:102891. [PMID: 37058836 DOI: 10.1016/j.cis.2023.102891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
The rechargeable alkaline aqueous zinc-air batteries (ZABs) are prospective candidates to supply the energy demand for their high theoretical energy density, inherent safety, and environmental friendliness. However, their practical application is mainly restricted by the unsatisfactory efficiency of the air electrode, leading to an intense search for high-efficient oxygen electrocatalysts. In recent years, the composites of carbon materials and transition metal chalcogenides (TMC/C) have emerged as promising alternatives because of the unique properties of these single compounds and the synergistic effect between them. In this sense, this review presented the electrochemical properties of these composites and their effects on the ZAB performance. The operational fundamentals of the ZABs were described. After elucidating the role of the carbon matrix in the hybrid material, the latest developments in the ZAB performance of the monometallic structure and spinel of TMC/C were detailed. In addition, we report topics on doping and heterostructure due to the large number of studies involving these specific defects. Finally, a critical conclusion and a brief overview sought to contribute to the advancement of TMC/C in the ZABs.
Collapse
Affiliation(s)
- Giancarlo de Souza Dias
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Product and Process Design, School of Chemical Engineering, University of Campinas (UNICAMP), Albert Einstein Av., 500, 13083-852 Campinas, São Paulo, Brazil
| | - Josiel Martins Costa
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato St., 80, 13083-862 Campinas, São Paulo, Brazil.
| | - Ambrósio Florêncio de Almeida Neto
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Product and Process Design, School of Chemical Engineering, University of Campinas (UNICAMP), Albert Einstein Av., 500, 13083-852 Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Han S, Peng S, Gao Z, Sun M, Cheng G, Zhang H, Su X, Chen M, Yu L. Green bridge between waste and energy: conversion the rotten wood into cathode for functional Zn-air battery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|