1
|
Duraisamy M, Elancheziyan M, Eswaran M, Ganesan S, Ansari AA, Rajamanickam G, Lee SL, Tsai PC, Chen YH, Ponnusamy VK. Novel ruthenium-doped vanadium carbide/polymeric nanohybrid sensor for acetaminophen drug detection in human blood. Int J Biol Macromol 2023:125329. [PMID: 37307970 DOI: 10.1016/j.ijbiomac.2023.125329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
The use of advanced electroactive catalysts enhances the performance of electrochemical biosensors in real-time biomonitoring and has received much attention owing to its excellent physicochemical and electrochemical possessions. In this work, a novel biosensor was developed based on the electrocatalytic activity of functionalized vanadium carbide (VC) material, including VC@ruthenium (Ru), VC@Ru-polyaniline nanoparticles (VC@Ru-PANI-NPs) as non-enzymatic nanocarriers for the fabrication of modified screen-printed electrode (SPE) to detect acetaminophen in human blood. As-prepared materials were characterized using SEM, TEM, XRD, and XPS techniques. Biosensing was carried out using cyclic voltammetry and differential pulse voltammetry techniques and has revealed imperative electrocatalytic activity. A quasi-reversible redox method of the over-potential of acetaminophen increased considerably compared with that at the modified electrode and the bare SPE. The excellent electrocatalytic behaviour of VC@Ru-PANI-NPs/SPE is attributed to its distinctive chemical and physical properties, including rapid electron transfer, striking ᴫ-ᴫ interface, and strong adsorptive capability. This electrochemical biosensor exhibits a detection limit of 0.024 μM, in a linear range of 0.1-382.72 μM with a reproducibility of 2.45 % relative standard deviation, and a good recovery from 96.69 % to 105.59 %, the acquired results ensure a better performance compared with previous reports. The enriched electrocatalytic activity of this developed biosensor is mainly credited to its high surface area, better electrical conductivity, synergistic effect, and abundant electroactive active sites. The real-world utility of the VC@Ru-PANI-NPs/SPE-based sensor was ensured via the investigation of biomonitoring of acetaminophen in human blood samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Murugesan Duraisamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia; SSN Research Centre, SSN College of Engineering, Kalavakkam, Chennai 603110, India
| | - Mari Elancheziyan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Muthusankar Eswaran
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Sivarasan Ganesan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Anees A Ansari
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Siew Ling Lee
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| |
Collapse
|
2
|
Yang LX, Mu YB, Liu RJ, Liu HJ, Zeng L, Li HY, Lin GQ, Zeng CL, Fu C. A facile preparation of submicro-sized Ti2AlC precursor toward Ti2CT MXene for lithium storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|