1
|
Krishnamachari M, Kumar M, Pandian MS, Chang JH. Hierarchical construction of 3D binder-free NiMoO 4/CoFe 2O 4/NF arrays to enhance water splitting and charge-storage efficiency. J Colloid Interface Sci 2024; 680:613-622. [PMID: 39579427 DOI: 10.1016/j.jcis.2024.11.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Developing inexpensive, highly active, robust bi-functional electrocatalysts for energy conversion and storage technology remains a vital challenge. Herein, we hierarchically constructed 3D binder-free NiMoO4/CoFe2O4/NF heterostructure material via an effective and facile two-step hydrothermal process. The strong electronic coupling among NiMoO4 and CoFe2O4 counterparts alternates the charge environment at the NiMoO4/CoFe2O4 interface, which builds the highway for a rapid and continuous charge transfer process. According to the surface characterization data, the 3D NiMoO4/CoFe2O4/NF surface possesses numerous multivalent active sites and affords robust structural and chemical stability to the electrode material. Benefiting from the hierarchical morphological reconstruction and synergistic effect between two functional materials of NiMoO4/CoFe2O4/NF heterostructure attained excellent over potential values of 88 mV and 249 mV with minimal Tafel slope value of 73 mV dec-1, 84 mV dec-1 for HER and OER respectively. For overall water splitting, experimental results demonstrated splendid stability over 50 h with a small cell voltage of 1.56 V at a current density of 10 mA cm-2 in a 1 M KOH alkaline electrolyzer. Furthermore, its specific capacitance (CS) reached 811C g-1 at 1 A/g and retained 85.5 % cycling stability after 5000 cycles at a current density of 5 A/g in a 6 M KOH electrolyte medium. This bi-functional hierarchical NiMoO4/CoFe2O4/NF heterostructured assembly will render outstanding electrocatalytic activity for future sustainable energy conversion and storage systems.
Collapse
Affiliation(s)
- Moorthy Krishnamachari
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 413310, Taiwan; Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan
| | - Mohanraj Kumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 413310, Taiwan
| | - Muthu Senthil Pandian
- SSN Research Centre, Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, Tamil Nadu, India
| | - Jih-Hsing Chang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 413310, Taiwan.
| |
Collapse
|
2
|
Gao P, Yue C, Zhang J, Bao J, Wang H, Chen Q, Jiang Y, Huang S, Hu Z, Zhang J. Construction of unique NiCoP/FeNiCoP hollow heterostructured ellipsoids with modulated electronic structure for enhanced overall water splitting. J Colloid Interface Sci 2024; 666:403-415. [PMID: 38603882 DOI: 10.1016/j.jcis.2024.03.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Transition metal phosphides have been demonstrated to be promising non-noble catalysts for water splitting, yet their electrocatalytic performance is impeded by unfavorable free energies of adsorbed intermediates. The achievement of nanoscale modulation in morphology and electronic states is imperative for enhancing their intrinsic electrocatalytic activity. Herein, we propose a strategy to expedite the water splitting process over NiCoP/FeNiCoP hollow ellipsoids by modulating the electronic structure and d-band center. These unique phosphorus (P) vacancies-rich ellipsoids are synthesized through an ion-exchange reaction between uniform NiCo-nanoprisms and K3[Fe(CN)6], followed by NaH2PO2-assisted phosphorization under N2 atmosphere. Various characterizations reveals that the titled catalyst possesses high specific surface area, abundant porosity, and accessible inner surfaces, all of which are beneficial for efficient mass transfer and gas diffusion. Moreover, density functional theory (DFT) calculations further confirms that the NiCoP/FeNiCoP heterojunction associated with P vacancies regulate the electronic structures of d-electrons and p-electrons of Co and P atoms, respectively, resulting in a higher desorption efficiency of adsorbed H* intermediates with a lower energy barrier for water splitting. Due to the aforementioned advantages, the resultant NiCoP/FeNiCoP hollow ellipsoids exhibit remarkably low overpotentials of 45 and 266 mV for hydrogen and oxygen evolution reaction to achieve the current densities of 10 and 50 mA cm-2, respectively. This work not only reports the synthesis of a hollow double-shell structure of NiCoP/FeNiCoP but also introduces a novel strategy for constructing a multifunctional electrocatalyst for water splitting.
Collapse
Affiliation(s)
- Pengyan Gao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Can Yue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jie Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jieyuan Bao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hongyong Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qiaochuan Chen
- School of Computer Engineering and Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yong Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Shoushuang Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Zhangjun Hu
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linkoping 58183, Sweden.
| | - Jiujun Zhang
- Institute for Sustainable Energy College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Guo B, Lin J, Mo F, Ding Y, Zeng T, Liang H, Wang L, Chen X, Mo J, Li DS, Yang HY, Bai J. Robust and Corrosion-Resistant Overall Water Splitting Electrode Enabled by Additive Manufacturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312216. [PMID: 38412417 DOI: 10.1002/smll.202312216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Electrolysis of water has emerged as a prominent area of research in recent years. As a promising catalyst support, copper foam is widely investigated for electrolytic water, yet the insufficient mechanical strength and corrosion resistance render it less suitable for harsh working conditions. To exploit high-performance catalyst supports, various metal supports are comprehensively evaluated, and Ti6Al4V (Ti64) support exhibited outstanding compression and corrosion resistance. With this in mind, a 3D porous Ti64 catalyst support is fabricated using the selective laser sintering (SLM) 3D printing technology, and a conductive layer of nickel (Ni) is coated to increase the electrical conductivity and facilitate the deposition of catalysts. Subsequently, Co0.8Ni0.2(CO3)0.5(OH)·0.11H2O (CoNiCH) nanoneedles are deposited. The resulting porous Ti64/Ni/CoNiCH electrode displayed an impressive performance in the oxygen evolution reaction (OER) and reached 30 mA cm-2 at an overpotential of only 200 mV. Remarkably, even after being compressed at 15.04 MPa, no obvious structural deformation is observed, and the attenuation of its catalytic efficiency is negligible. Based on the computational analysis, the CoNiCH catalyst demonstrated superior catalytic activity at the Ni site in comparison to the Co site. Furthermore, the electrode reached 30 mA cm-2 at 1.75 V in full water splitting conditions and showed no significant performance degradation even after 60 h of continuous operation. This study presents an innovative approach to robust and corrosion-resistant catalyst design.
Collapse
Affiliation(s)
- Binbin Guo
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jie Lin
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Funian Mo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Yihong Ding
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Tianbiao Zeng
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Haowen Liang
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Liping Wang
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xiaoteng Chen
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jiewen Mo
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jiaming Bai
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
4
|
Lakhan MN, Hanan A, Hussain A, Ali Soomro I, Wang Y, Ahmed M, Aftab U, Sun H, Arandiyan H. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chem Commun (Camb) 2024; 60:5104-5135. [PMID: 38625567 DOI: 10.1039/d3cc06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Abdul Hanan
- Sunway Center for Electrochemical Energy and Sustainable Technology, SCEEST, Sunway University, Bandar Sunway, Malaysia
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, P. R. China
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Mukhtiar Ahmed
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan.
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, 066004 Qinhuangdao, P. R. China
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia.
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Chen Z, Qu Q, Li X, Srinivas K, Chen Y, Zhu M. Room-Temperature Synthesis of Carbon-Nanotube-Interconnected Amorphous NiFe-Layered Double Hydroxides for Boosting Oxygen Evolution Reaction. Molecules 2023; 28:7289. [PMID: 37959709 PMCID: PMC10648594 DOI: 10.3390/molecules28217289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The oxygen evolution reaction (OER) is a key half-reaction in electrocatalytic water splitting. Large-scale water electrolysis is hampered by commercial noble-metal-based OER electrocatalysts owing to their high cost. To address these issues, we present a facile, one-pot, room-temperature co-precipitation approach to quickly synthesize carbon-nanotube-interconnected amorphous NiFe-layered double hydroxides (NiFe-LDH@CNT) as cost-effective, efficient, and stable OER electrocatalysts. The hybrid catalyst NiFe-LDH@CNT delivered outstanding OER activity with a low onset overpotential of 255 mV and a small Tafel slope of 51.36 mV dec-1, as well as outstanding long-term stability. The high catalytic capability of NiFe-LDH@CNT is associated with the synergistic effects of its room-temperature synthesized amorphous structure, bi-metallic modulation, and conductive CNT skeleton. The room-temperature synthesis can not only offer economic feasibility, but can also allow amorphous NiFe-LDH to be obtained without crystalline boundaries, facilitating long-term stability during the OER process. The bi-metallic nature of NiFe-LDH guarantees a modified electronic structure, providing additional catalytic sites. Simultaneously, the highly conductive CNT network fosters a nanoporous structure, facilitating electron transfer and O2 release and enriching catalytic sites. This study introduces an innovative approach to purposefully design nanoarchitecture and easily synthesize amorphous transition-metal-based OER catalysts, ensuring their cost effectiveness, production efficiency, and long-term stability.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| | - Qiang Qu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| | - Xinsheng Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Katam Srinivas
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuanfu Chen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Afaq M, Shahid M, Ahmad I, Yousaf S, Alazmi A, Mahmoud MHH, El Azab IH, Warsi MF. Large-scale sonochemical fabrication of a Co 3O 4-CoFe 2O 4@MWCNT bifunctional electrocatalyst for enhanced OER/HER performances. RSC Adv 2023; 13:19046-19057. [PMID: 37362336 PMCID: PMC10286564 DOI: 10.1039/d3ra03117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Herein, we have prepared a mixed-phase Co3O4-CoFe2O4@MWCNT nanocomposite through a cheap, large-scale, and facile ultrasonication route followed by annealing. The structural, morphological, and functional group analyses of the synthesized catalysts were performed by employing various characterization approaches such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The resultant samples were tested for bifunctional electrocatalytic activity through various electrochemical techniques: cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The prepared Co3O4-CoFe2O4@MWCNT nanocomposite achieved a very high current density of 100 mA cm-2 at a lower (290 mV and 342 mV) overpotential (vs. RHE) and a smaller (166 mV dec-1 and 138 mV dec-1) Tafel slope in the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively, compared to Co3O4-CoFe2O4. The excellent electrochemical activity of the as-prepared electrocatalyst was attributed to the uniform incorporation of Co3O4-CoFe2O4 over MWCNTs which provides high redox active sites, a greater surface area, better conductivity, and faster charge mobility. Furthermore, the enhanced electrochemical active surface, low charge-transfer resistance (Rct), and higher exchange current density (J0) of the Co3O4-CoFe2O4@MWCNT ternary composite are attributed to its superior behavior as a bifunctional electrocatalyst. Conclusively, this study demonstrates a novel and large-scale synthesis approach for bifunctional electrocatalysts with a high aspect ratio and abundance of active sites for high-potential energy applications.
Collapse
Affiliation(s)
- Muhammad Afaq
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Muhammad Shahid
- Department of Chemistry, College of Science, University of Hafr Al Batin P.O. Box 1803 Hafr Al Batin Saudi Arabia
| | - Iqbal Ahmad
- Department of Chemistry, Allama Iqbal Open University Islamabad 44000 Pakistan
| | - Sheraz Yousaf
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Amira Alazmi
- Department of Science and Technology, University Colleges at Nairiyah, University of Hafr Al Batin Nairiyah 31981 Saudi Arabia
| | - M H H Mahmoud
- Department of Chemistry, College of Science, Taif University Taif 21944 Saudi Arabia
| | - Islam H El Azab
- Department of Food Science and Nutrition, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Muhammad Farooq Warsi
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| |
Collapse
|
7
|
Metal-Organic Frameworks Derived Interfacing Fe2O3/ZnCo2O4 Multimetal Oxides as a Bifunctional Electrocatalyst for Overall Water Splitting. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Wang X, Zhao M, Gong Z, Fang S, Hu S, Pi W, Bao H. Cauliflower-like NiFe alloys anchored on a flake iron nickel carbonate hydroxide heterostructure towards superior overall water and urea electrolysis. NANOSCALE 2023; 15:779-790. [PMID: 36533301 DOI: 10.1039/d2nr05381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring efficient, stable and multifunctional Earth-rich electrocatalysts is vital for hydrogen generation. Hence, an efficient heterostructure consisting of cauliflower-like NiFe alloys anchored on flake iron nickel carbonate hydroxide which is supported on carbon cloth (NiFe/NiFeCH/CC) was synthesized as a trifunctional electrocatalyst for efficient hydrogen production by overall water and urea splitting. While optimizing and regulating the ratio of Ni to Fe, benefiting from the special morphology and synergistic effect between the NiFe alloy and NiFeCH, the NiFe/NiFeCH/CC heterostructure exhibits outstanding oxygen evolution reaction (OER) performance with a low overpotential of 190 mV at 10 mA cm-2 after a stability test for 150 h. Notably, when the NiFe/NiFeCH/CC heterostructure is used as both the anode and cathode simultaneously, it merely requires a cell voltage of 1.49 V for the overall water splitting and 1.39 V for urea electrolysis at 10 mA cm-2 with excellent durability. Thus, this work not just provides the application of NiFe-based catalysts in overall water splitting, but also offers a viable method for the treatment of urea-rich wastewater.
Collapse
Affiliation(s)
- Xing Wang
- School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China.
| | - Meiru Zhao
- School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China.
| | - Zhangquan Gong
- School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China.
| | - Siyao Fang
- School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China.
| | - Sheng Hu
- School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China.
| | - Wei Pi
- School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China.
| | - Haifeng Bao
- School of Materials Science and Engineering, Key Laboratory for New Textile Materials and Applications of Hubei Province, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430200 Wuhan, China.
| |
Collapse
|
9
|
Srinivas K, Ma F, Liu Y, Zhang Z, Wu Y, Chen Y. Metal-Organic Framework-Derived Fe-Doped Ni 3Se 4/NiSe 2 Heterostructure-Embedded Mesoporous Tubes for Boosting Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52927-52939. [PMID: 36382691 DOI: 10.1021/acsami.2c16133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It is crucial but challenging to promote sluggish kinetics of oxygen evolution reaction (OER) for water splitting via finely tuning the hierarchical nanoarchitecture and electronic structure of the catalyst. To address such issues, herein we present iron-doped Ni3Se4/NiSe2 heterostructure-embedded metal-organic framework-derived mesoporous tubes (Ni-MOF-Fe-Se-400) realized by an interfacial engineering strategy. Due to the hierarchical nanoarchitecture of conductive two-dimensional nanosheet-constructed MOF-derived mesoporous tubes, coupled with fine tuning of the electronic structure via Fe-doping and interactions between Ni3Se4/NiSe2 heterostructures, the Ni-MOF-Fe-Se-400 catalyst delivers superior OER activity: it requires only a low overpotential of 242 mV to achieve 10 mA cm-2 (Ej=10), surpassing the benchmark RuO2 (Ej=10 = 286 mV) and displays exceptional durability in the chronoamperometric i-t test with a small current decay (6.2%) after 72 h. Furthermore, the water splitting system comprises a Ni-MOF-Fe-Se-400 anode and a Pt/C cathode requires a low cell voltage of 1.576 V to achieve Ej=10 with an excellent Faradic efficiency (∼100%), outperforming the RuO2-Pt/C combination. This work presents a novel interfacial engineering strategy to finely adjust the morphology and electronic structure of the non-noble metal-based OER catalyst via a facile fabrication method.
Collapse
Affiliation(s)
- Katam Srinivas
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Fei Ma
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Yanfang Liu
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Ziheng Zhang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Yu Wu
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Yuanfu Chen
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| |
Collapse
|
10
|
Dai FF, Xue YX, Gao DL, Liu YX, Chen JH, Lin QJ, Lin WW, Yang Q. Facile fabrication of self-supporting porous CuMoO 4@Co 3O 4 nanosheets as a bifunctional electrocatalyst for efficient overall water splitting. Dalton Trans 2022; 51:12736-12745. [PMID: 35946555 DOI: 10.1039/d2dt01613c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Research shows that redox complementarity and synergism among the ingredients of heterogeneous catalysts can enhance the performance of the catalyst. In this research, a porous CuMoO4@Co3O4 nanosheet electrocatalyst is prepared, which is uniformly decorated on nickel foam (NF) by hydrothermal reactions and the impregnation method. The CuMoO4@Co3O4 is an efficient bifunctional catalyst with prominent electrocatalytic activity and durability. It requires overpotentials of only 54 and 251 mV to obtain current densities of 10 and 50 mA cm-2 for the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction (OER) in 1.0 mol L-1 KOH, corresponding to Tafel slope values of 98.8 and 87.4 mV dec-1, respectively. Furthermore, the CuMoO4@Co3O4 shows excellent stability of 120 h chronopotentiometry at a current density of 100 mA cm-2 for the HER/OER. Notably, an alkaline electrolyzer (with CuMoO4@Co3O4 as the HER and OER electrodes) can deliver a current density of 10 mA cm-2 at a low voltage of 1.51 V. The catalytic activity of CuMoO4@Co3O4 can be attributed to the structure of the porous nanosheets and the synergistic effect between CuMoO4 and Co3O4.
Collapse
Affiliation(s)
- Fei Fei Dai
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Yan Xue Xue
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Ding Ling Gao
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Yu Xiang Liu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Jian Hua Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China. .,Fujian Province University Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qiao Jing Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Wei Wei Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Qian Yang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China. .,Fujian Province University Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China
| |
Collapse
|
11
|
Pirzada LA, Mugheri AQ, Ghanghro S, Pirzada AH, Ibupoto MH, Ahmed K. Self‐supported bimetallic based materials deeply self‐reconstructing electrocatalysts for advances in hydrogen production. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luqman Ahmed Pirzada
- Laser Manufacturing Engineering College of Mechanical and Electric Engineering, Soochow University Suzhou China
| | - Abdul Qayoom Mugheri
- Dr. M.A Kazi Institute of Chemistry, University of Sindh Jamshoro Jamshoro Pakistan
| | - Sahib Ghanghro
- Department of Botany Shah Abdul Latif University Khairpur Mir's, Sindh Pakistan
| | - Ashaque Hussain Pirzada
- Department of Chemical Engineering Mehran University of Engineering and Technology Sindh Pakistan
| | | | - Kashif Ahmed
- Department of Zoology Shah Abdul Latif University Khairpur Mir's Sindh Pakistan
| |
Collapse
|
12
|
Shi F, Wang Z, Zhu K, Zhu X, Yang W. Enhancing activity and stability of Co-MOF-74 for oxygen evolution reaction by wrapping polydopamine. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Malik MS, Akoh J, Aroori S, Latour JM. Implantable Doppler Probe as a Vascular Monitoring Device in Kidney Transplant Patients: Investigation of Use at a Single Center. EXP CLIN TRANSPLANT 2022; 20:355-361. [PMID: 35475419 DOI: 10.6002/ect.2021.0500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Vascular complications account for 30% to 35% of total kidney grafts lost during the first 3 months posttransplant. Early detection of vascular complications allows an opportunity for prompt intervention, which is critical to reducing graft loss. In this study, we evaluated the usefulness of an implantable Doppler probe as a vascular monitoring device in kidney transplant patients. MATERIALS AND METHODS An implantable Doppler probe is used intermittently for postoperative monitoring of kidney transplant patients at our center. In this retrospective study, we analyzed prospectively maintained medical data in which we compared clinical outcomes of kidney transplant recipients who had postoperative implantable Doppler probe monitoring versus standard care clinical observation. Between January 2016 and October 2021, 324 kidney transplant patients were seen at our center. Patients were divided into 2 groups: group 1 (n = 194; 60%) included kidney transplant recipients with postoperative implantable Doppler probe monitoring and group 2 (n = 129; 40%) included kidney transplant recipients with standard care clinical observation. We compared number of vascular complications, number of departmental ultrasonographic scans required posttransplant, and graftloss at 3 months between the 2 groups. RESULTS Vascular complications were identified in 13.5% of total patients, with graft loss identified in 2.1%. Both groups were similar in demographical characteristics. Group 1 had more vascular complications (17.5% vs 9.3%; relative risk = 1.88), fewer ultrasonographic scans during the first 24 hours posttransplant (71.1% vs 83.7%; relative risk = 0.84), and lower graft loss (1.5% vs 3.1%; relative risk = 0.48) than group 2. All probes were removed safely after 72 hours, and no complications related to the device were reported. CONCLUSIONS The monitoring device may be used as an additional adjunct for graft monitoring in kidney transplant patients. Further controlled studies are warranted to evaluate this device in clinical practice.
Collapse
Affiliation(s)
- M Shahzar Malik
- From the Southwest Transplant Center, University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | | | | | | |
Collapse
|