Yin S, Wang Y, Zhao L, Sheng Y, Zhang X, Huang X, Wen G. Quantum dot heterostructures on N-doped graphene with accelerated diffusion kinetics for stable lithium-ion storage.
J Colloid Interface Sci 2023;
650:1164-1173. [PMID:
37473476 DOI:
10.1016/j.jcis.2023.07.092]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
The high energy density and low self-discharge rate of lithium-ion batteries make them promising for large-scale energy storage. However, the practical development of such electrochemical energy storage systems relies heavily on the development of anode materials with high multiplier capacity and stable cycle life. Here, a simple and efficient one-step hydrothermal method is used to obtain stannide heterostructures, which are loaded on N-doped graphene (SnS2/SnO2@NG) that promotes Li+ diffusion for fast charge transfer. It is demonstrated that the built-in electric field generated by the electron transfer from electron-rich SnS2 to SnO2 in the stannide heterojunction collectively provides abundant cation adsorption sites, accelerating the migration of Li+ thus improving the electrochemical reaction kinetics. Besides, the SnS2/SnO2 nanoparticles have high structural stability, and the heterojunction compressive stresses obtained from density functional theory (DFT) calculations can significantly limit the structural damage. When applied as anodes in Li+ batteries with 300 cycles at 0.5 A/g, we achieved a high reversible capacity of 892.73 mAh/g. The rational design of low-cost batteries for energy storage and conversion can benefit from the quantitative design of fast and persistent charge transfer in a stannide heterostructure.
Collapse