1
|
Chang J, Hu Z, Wu D, Xu F, Chen C, Jiang K, Gao Z. Prussian blue analog-derived nickel iron phosphide-reduced graphene oxide hybrid as an efficient catalyst for overall water electrolysis. J Colloid Interface Sci 2023; 638:801-812. [PMID: 36791478 DOI: 10.1016/j.jcis.2023.02.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Efficient and bifunctional nonprecious catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are essential for the production of green hydrogen via water electrolysis. Transition metal (Ni, Co, Fe, etc.) phosphides are frequently documented HER catalysts, whereas their bimetallic oxides are efficient OER catalysts, thus enabling bifunctional catalysis for water electrolysis via proper operation. Herein, phosphide-reduced graphene oxide (rGO) hybrids were prepared from graphene oxide (GO)-incorporated bimetal Prussian blue analog (PBA) precursors. The hybrids could experience partial surface oxidation to create oxide layers with OER activities, and the hybrids also possessed considerable HER properties, therefore enabling bifunctional catalytic features for water electrolysis. The typical NiFeP-rGO hybrid demonstrated an overpotential of 250 mV at 10 mA cm-2 and good durability for OER, as well as moderate HER catalytic features (overpotential of 165 mV at -10 mA cm-2 and acceptable catalytic stability). Due to the bifunctional catalytic features, the NiFeP-rGO-based symmetric water electrolyzer demonstrated a moderate input voltage and high faradaic efficiency (FE) for O2 and H2 production. The current work provides a feasible way to prepare OER and HER bifunctional catalysts by facile phosphorization of PBA-associated precursors and spontaneous surface oxidation. Given the oxidation/reduction bifunctional catalytic behaviors, phosphide-rGO hybrid catalysts have great potential for widespread application in fields beyond water electrolysis, such as electrochemical pollution abatement, sensors, energy devices and organic syntheses.
Collapse
Affiliation(s)
- Jiuli Chang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Zhanqiang Hu
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Dapeng Wu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Fang Xu
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Chen Chen
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Zhiyong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|