1
|
Review of advances in improving thermal, mechanical and electrochemical properties of polyaniline composite for supercapacitor application. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
2
|
Louis H, Egemonye TC, Unimuke TO, Inah BE, Edet HO, Eno EA, Adalikwu SA, Adeyinka AS. Detection of Carbon, Sulfur, and Nitrogen Dioxide Pollutants with a 2D Ca 12O 12 Nanostructured Material. ACS OMEGA 2022; 7:34929-34943. [PMID: 36211081 PMCID: PMC9535646 DOI: 10.1021/acsomega.2c03512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/27/2022] [Indexed: 05/24/2023]
Abstract
In recent times, nanomaterials have been applied for the detection and sensing of toxic gases in the environment owing to their large surface-to-volume ratio and efficiency. CO2 is a toxic gas that is associated with causing global warming, while SO2 and NO2 are also characterized as nonbenign gases in the sense that when inhaled, they increase the rate of respiratory infections. Therefore, there is an explicit reason to develop efficient nanosensors for monitoring and sensing of these gases in the environment. Herein, we performed quantum chemical simulation on a Ca12O12 nanocage as an efficient nanosensor for sensing and monitoring of these gases (CO2, SO2, NO2) by employing high-level density functional theory modeling at the B3LYP-GD3(BJ)/6-311+G(d,p) level of theory. The results obtained from our studies revealed that the adsorption of CO2 and SO2 on the Ca12O12 nanocage with adsorption energies of -2.01 and -5.85 eV, respectively, is chemisorption in nature, while that of NO2 possessing an adsorption energy of -0.69 eV is related to physisorption. Moreover, frontier molecular orbital (FMO), global reactivity descriptors, and noncovalent interaction (NCI) analysis revealed that the adsorption of CO2 and SO2 on the Ca12O12 nanocage is stable adsorption, while that of NO2 is unstable adsorption. Thus, we can infer that the Ca12O12 nanocage is more efficient as a nanosensor in sensing CO2 and SO2 gases than in sensing NO2 gas.
Collapse
Affiliation(s)
- Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - ThankGod C. Egemonye
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Tomsmith O. Unimuke
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Bassey E. Inah
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Henry O. Edet
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Ededet A. Eno
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Stephen A. Adalikwu
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Adedapo S. Adeyinka
- Research
Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
3
|
Banana Peel and Conductive Polymers-Based Flexible Supercapacitors for Energy Harvesting and Storage. ENERGIES 2022. [DOI: 10.3390/en15072471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Flexible supercapacitors are highly demanding due to their wearability, washability, lightweight property and rollability. In this paper, a comprehensive review on flexible supercapacitors based on conductive polymers such as polypyrrole (PPy), polyaniline (PANI) and poly(3,4-ethylenedioxtthiophne)-polystyrene sulfonate (PEDOT:PSS). Methods of enhancing the conductivity of PEDOT:PSS polymer using various composites and chemical solutions have been reviewed in detail. Furthermore, supercapacitors based on carbonized banana peels and methods of activation have been discussed in point. This review covers the up-to-date progress achieved in conductive polymer-based materials for supercapacitor electrodes. The effect of various composites with PEDOT:PSS have been discussed. The review result indicated that flexible, stretchable, lightweight, washable, and disposable wearable electronics based on banana peel and conductive polymers are highly demanding.
Collapse
|