1
|
Wang H, Yang S, Fan W, Cui Y, Gong G, Jiao L, Chen S, Qi J. Sight into a Rare-Earth-Based Catalyst with Spatial Confinement Effect from the Perspective of Electronic Structure. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14749-14772. [PMID: 40022656 DOI: 10.1021/acsami.4c17065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Rare-earth elements include 15 kinds of lanthanides as well as Sc and Y elements. Interestingly, the special electronic configuration of a lanthanide rare earth is [Xe]4fn5d0-16s2 (n = 0-14), which results in rare-earth materials' unique activity in such areas as thermal catalysis, electrocatalysis, photocatalysis, etc. It is worth noting that a class of materials with spatial confinement effects are playing an increasingly important role in the catalytic performance; especially, the construction of hollow multishelled structures (HoMSs) can further enhance the activity of rare-earth catalytic materials. In this review, we discuss in depth the important roles of the rare-earth 4f5d electronic structure. Subsequently, this review systematically summarizes the synthesis methods of rare-earth HoMSs and their research progress in the field of catalysis and specifically introduces the advanced characterization and analysis methods of rare-earth HoMSs. Finally, the research directions, application prospects, and challenges that need to be focused on in the future of rare-earth-based HoMSs are discussed and anticipated. We believe that this review will not only inspire more creativity in optimizing the local electronic structure and spatial confinement structure design of rare-earth-based catalysts but also provide valuable insights for designing other types of catalysts.
Collapse
Affiliation(s)
- Huan Wang
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Shiduo Yang
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Wenlin Fan
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Yinghan Cui
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Guannan Gong
- Public Management and Modern Service Department, Hebei Vocational College of Labour Relations, Shijiazhuang 050093, P. R. China
| | - Lishi Jiao
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Sen Chen
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, P. R. China
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Wu H, Li J, Ji Q, Ariga K. Nanoarchitectonics for structural tailoring of yolk-shell architectures for electrochemical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2420664. [PMID: 39539602 PMCID: PMC11559037 DOI: 10.1080/14686996.2024.2420664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Developing electrochemical energy storage and conversion systems, such as capacitors, batteries, and fuel cells is crucial to address rapidly growing global energy demands and environmental concerns for a sustainable society. Significant efforts have been devoted to the structural design and engineering of various electrode materials to improve economic applicability and electrochemical performance. The yolk-shell structures represent a special kind of core-shell morphologies, which show great application potential in energy storage, controlled delivery, adsorption, nanoreactors, sensing, and catalysis. Their controllable void spaces may facilitate the exposure of more active sites for redox reactions and enhance selective adsorption. Based on different nanoarchitectonic designs and fabrication techniques, the yolk-shell structures with controllable structural nanofeatures and the homo- or hetero-compositions provide multiple synergistic effects to promote reactions on the electrode/electrolyte interfaces. This review is focused on the key structural features of yolk-shell architectures, highlighting the recent advancements in their fabrication with adjustable space and mono- or multi-metallic composites. The effects of tailorable structure and functionality of yolk-shell nanostructures on various electrochemical processes are also summarized.
Collapse
Affiliation(s)
- Huan Wu
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Jiahao Li
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering Nanjing University of Science and Technology, Nanjing, China
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
3
|
Qiu Q, Wang J, Yao P, Li Y. A facile coprecipitation approach for synthesizing LaNi 0.5Co 0.5O 3 as the cathode for a molten-salt lithium-oxygen battery. Faraday Discuss 2024; 248:327-340. [PMID: 37753574 DOI: 10.1039/d3fd00078h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The cathode of a lithium-oxygen battery (LOB) should be well designed to deliver high catalytic activity and long stability, and to provide sufficient space for accommodating the discharge product. Herein, a facile coprecipitation approach is employed to synthesize LaNi0.5Co0.5O3 (LNCO) perovskite oxide with a low annealing temperature. The assembled LOB exhibits superior electrochemical performance with a low charge overpotential of 0.03-0.05 V in the current density range of 0.1-0.5 mA cm-2. The battery ran stably for 119 cycles at a high coulombic efficiency. The superior performance is ascribed to (i) the high catalytic activity of LNCO towards oxygen reduction/evolution reactions; (ii) the increased temperature enabling fast kinetics; and (iii) the LiNO3-KNO3 molten salt enhancing the stability of the LOB operating at high temperature.
Collapse
Affiliation(s)
- Qianyuan Qiu
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, FI-00076 Aalto, Finland.
| | - Jiaqi Wang
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, FI-00076 Aalto, Finland.
- Flexible Printed Electronic Technology Center and State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
| | - Penghui Yao
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, FI-00076 Aalto, Finland.
| | - Yongdan Li
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, FI-00076 Aalto, Finland.
| |
Collapse
|
4
|
NOMOTO S, KITAMURA H, TAKASE S, SHIMIZU Y. Bi-functional Oxygen Electrocatalysts Using Mixed-Metal Tungsten-Nitrides in Alkaline Media. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shotaro NOMOTO
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology
| | - Hiroki KITAMURA
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology
| | - Satoko TAKASE
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology
| | - Youichi SHIMIZU
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology
| |
Collapse
|