1
|
Jiao L, Zhao M, Zheng Q, Ren Q, Su Z, Li M, Li F. Zeolitic imidazolate framework-67-derived chalcogenides as electrode materials for supercapacitors. Dalton Trans 2025. [PMID: 40354095 DOI: 10.1039/d4dt02957g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
With the rapid development of new energy technologies, hybrid supercapacitors have received widespread attention owing to their advantages of high power density, fast charging/discharging rate and long cycle life. In this case, the selection and design of electrode materials are the key to improving the energy storage performance of supercapacitors. Herein, zeolitic imidazolate framework-67 (ZIF-67) is presented as a good candidate material for the fabrication of supercapacitor electrodes because of its controllable pore size, constant cavity size and large specific area. Moreover, pristine ZIF-67 and ZIF-67-derived porous carbon have shown exemplary performances in supercapacitors. However, they belong to the class of electric double layer capacitor materials and have a lower magnitude of energy storage compared with pseudocapacitor materials. Therefore, to improve the energy density of hybrid supercapacitors, other ZIF-67 derivatives need to be explored, especially chalcogenides. This review mainly reports the application of ZIF-67-derived transition metal chalcogenides (TMCs, C including Oxide, Sulfide, Selenide, Telluride) in supercapacitors. Moreover, the strategies for the preparation of ZIF-67-derived TMCs and their electrochemical performance in supercapacitors are further discussed. Finally, the remaining challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Lidong Jiao
- School of Physics, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Mingshu Zhao
- School of Physics, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | | | - Qingyi Ren
- School of Physics, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Zhou Su
- School of Physics, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Min Li
- School of Physics, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Feng Li
- School of Physics, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| |
Collapse
|
2
|
Wei M, Shi X, Zhu M, Zhang S, Zhang H, Yao H, Xu S. Research Progress on Chemiresistive Carbon Monoxide Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:303. [PMID: 39997866 PMCID: PMC11858023 DOI: 10.3390/nano15040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
The development of high-performance carbon monoxide (CO) sensors is essential for protecting human health, ensuring industrial safety, and maintaining environmental well-being. Among various types of sensors, chemiresistive sensors exhibit considerable promise for real-time applications due to their operational capabilities. To achieve high performances of chemiresistive sensors, this review emphasizes various enhancement strategies, encompassing the refinement of sensing materials, the augmentation of sensor structures, and the optimization of gas recognition algorithms. Specifically, the modification techniques of sensing materials, which include the construction of heterostructures, the decoration with noble metals, surface functionalization, hetero-element-doping, and morphology engineering, are delved into comprehensively. This review provides insights into the rational design of cost-effective CO sensors.
Collapse
Affiliation(s)
| | - Xuerong Shi
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (M.W.); (M.Z.); (S.Z.); (H.Z.); (H.Y.)
| | | | | | | | | | - Shusheng Xu
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (M.W.); (M.Z.); (S.Z.); (H.Z.); (H.Y.)
| |
Collapse
|
3
|
Zhu M, Zhang H, Zhang S, Yao H, Shi X, Xu S. Chemoresistive Gas Sensors Based on Noble-Metal-Decorated Metal Oxide Semiconductors for H 2 Detection. MATERIALS (BASEL, SWITZERLAND) 2025; 18:451. [PMID: 39859922 PMCID: PMC11767018 DOI: 10.3390/ma18020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Hydrogen has emerged as a prominent candidate for future energy sources, garnering considerable attention. Given its explosive nature, the efficient detection of hydrogen (H2) in the environment using H2 sensors is paramount. Chemoresistive H2 sensors, particularly those based on noble-metal-decorated metal oxide semiconductors (MOSs), have been extensively researched owing to their high responsiveness, low detection limits, and other favorable characteristics. Despite numerous recent studies and reviews reporting advancements in this field, a comprehensive review focusing on the rational design of sensing materials to enhance the overall performance of chemoresistive H2 sensors based on noble-metal-decorated MOFs is lacking. This review aims to address this gap by examining the principles, applications, and challenges of chemoresistive H2 sensors, with a specific focus on Pd-decorated and Pt-decorated MOSs-based sensing materials. The observations and explanations of strategies employed in the literature, particularly within the last three years, have been analyzed to provide insights into the latest research directions and developments in this domain. This understanding is essential for designing and fabricating highly efficient H2 sensors.
Collapse
Affiliation(s)
| | | | | | | | - Xuerong Shi
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (M.Z.); (H.Z.); (S.Z.); (H.Y.)
| | - Shusheng Xu
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (M.Z.); (H.Z.); (S.Z.); (H.Y.)
| |
Collapse
|
4
|
Huang M, Yao H, Cao F, Wang P, Shi XR, Zhang M, Xu S. Structural engineering evoked multifunctionality in molybdate nanosheets for industrial oxygen evolution and dual energy storage devices inspired by multi-method calculations. J Colloid Interface Sci 2024; 676:471-484. [PMID: 39047375 DOI: 10.1016/j.jcis.2024.07.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Structural engineering, including electronic and geometric modulations, is a good approach to improve the activity of electrocatalysts. Herein, we employed FeOOH and the second metal center Ni to modulate the electronic structure of CoMoO4 and used a low temperature solvothermal route and a chemical etching method to prepare the special hollow hierarchical structure. Based on the prediction of multi-method calculations by density functional theory (DFT) and ab initial molecular dynamics (AIMD), a series of materials were fabricated. Among them, the optimal hollow FeOOH/(Ni1Co1)MoO4 by coating (NiCo)MoO4 nanosheets on FeOOH nanotubes showed excellent performances toward high current density oxygen evolution reaction (OER) in alkaline and simulated seawater solutions, hybrid supercapacitor (HSC), and aqueous battery due to the well-controlled electronic and geometric structures. The optimal FeOOH/(Ni1Co1)MoO4 required overpotentials of 225 and 546 mV to deliver 10 and 1000 mA cm-2 current densities toward alkaline OER, and maintained a good stability for 100 h at 200 mA cm-2 with negligible attenuation. The FeOOH/(Ni1Co1)MoO4//Pt/C electrolyzer exhibited a low cell voltage of 1.52 and 1.79 V to drive 10 and 200 mA cm-2 and retained a long-term durability nearly 100 h at 1.79 V. As the electrode of energy storage devices, it possessed a specific capacity of 342 mA h g-1 at 1 A g-1. HSC and SC-type battery devices were fabricated. The assembled HSC kept a capacitance retention of 94 % after 10,000 cycles. This work provided a way to fabricate effective and stable multifunctional materials for energy storage and conversion with the aid of multi-method calculations.
Collapse
Affiliation(s)
- Mengru Huang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Haiyu Yao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Feng Cao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Peijie Wang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xue-Rong Shi
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, China.
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Shusheng Xu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
5
|
Yao H, Wang P, Zhu M, Shi XR. Recent progress in hierarchical nanostructures for Ni-based industrial-level OER catalysts. Dalton Trans 2024; 53:2442-2449. [PMID: 38229516 DOI: 10.1039/d3dt03820c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Exploring efficient and low-cost oxygen evolution reaction (OER) electrocatalysts reaching the industrial level current density is crucial for hydrogen production via water electrolysis. In this feature article, we summarize the recent progress in hierarchical nanostructures for the industrial-level OER. The contents mainly concern (i) the design of a hierarchical structure; (ii) a Ni-based hierarchical structure for the industrial current density OER; and (iii) the surface reconstruction of the hierarchical structure during the OER process. The work provides valuable guidance and insights for the manufacture of hierarchical nanomaterials and devices for industrial applications.
Collapse
Affiliation(s)
- Haiyu Yao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Peijie Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Min Zhu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xue-Rong Shi
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, China
| |
Collapse
|
6
|
Zhang L, Sun J, Li F, Cao Z, Lang J, Li S. Manganese-cobalt hydroxide nanosheets anchored on a hollow sulfur-doped bimetallic MOF for high-performance supercapacitors and the hydrogen evolution reaction in alkaline media. Dalton Trans 2024; 53:1274-1283. [PMID: 38112238 DOI: 10.1039/d3dt03919f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Nonmetallic doping and in situ growth techniques for designing electrode materials with excellent electrocatalytic activity are effective strategies to enhance the electrochemical performance. Bifunctional electrode materials for supercapacitors (SCs) and the hydrogen evolution reaction (HER) have attracted great interest due to their potential applications in green energy storage and conversion. Herein, the bimetallic MnCo LDH is anchored on a hollow sulfur (S)-doped MnCo-MOF-74 surface, forming a poplar flower-like 3D composite which is used for SCs and the HER in alkaline media. The fabricated S-MnCo-MOF-74@MnCo LDH/NF electrode exhibits a favorable specific capacitance of 1875.4 F g-1 at 1 A g-1 and steady long-term cycling performance. Moreover, the assembled HSC using S-MnCo-MOF-7@MnCo LDH/NF as the cathode material and active carbon (AC) as the anode material shows 546.4 F g-1 capacitance (1 A g-1) with a maximum energy density of 58 W h kg-1 at 14 000 W kg-1 power density. As an electrocatalyst, S-MnCo-MOF-7@MnCo LDH/NF exhibits excellent HER properties with a small Tafel slope of 128.9 mV dec-1 a low overpotential of 197 mV at 10 mA cm-2 and durable performance for 10 hours in alkaline media. The present work provides insights into understanding and designing active electrode materials for stable hydrogen evolution and high-performing supercapacitors in an alkaline environment.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Jingyu Sun
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Fengbo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Zhen Cao
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Jiaxin Lang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Shaobin Li
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
7
|
Ahmed FM, Ateia EE, El-dek SI, El-kader SMA, Shafaay AS. Synergistic interaction between molybdenum disulfide nanosheet and metal organic framework for high performance supercapacitor.. [DOI: 10.21203/rs.3.rs-3263864/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Zeolitic imidazolate framework-67 crystals (ZIF-67) anchored molybdenum disulfide nanosheets (MS) have been synthesized via a hydrothermal approach followed by a simple chemical method. MS concentration has been varied to investigate its impact on the electrochemical efficiency within the electrode nanocomposite. The shiny spot of this composite is the combination of two desirable properties, the conductive path created by MS, and the structural framework support provided by Zeolitic imidazolate framework-67 intercalated with nickel (Z67.Ni). The reason behind this choice of this specific nanocomposite is the framework of the Z67.Ni that prevents MS nanosheets from restacking during the repeated charge and discharge cycles. Superior electrochemical behavior of Z67.Ni with 70% weight percent of MS (Z67.Ni/MS7) demonstrated the excellent synergistic effect between Z67.Ni crystals and MS nanosheets. It has a specific capacitance of 308.5 F g− 1 at 1 A g− 1 and delivers an excellent energy density (Ed) of 83.98 W h kg− 1 with a power density (Pd) of 2.78 kW kg− 1. These excellent results demonstrate the high efficiency of this nanocomposite material in supercapacitor applications.
Collapse
|
8
|
Wang H, Ren JH, Hou JA, Sun CZ, Liu YY, Zhang CY. Morphology-controlled Co0.5Ni0.5S2-C double-shell porous microspheres for the construction of high-performance asymmetric supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
9
|
Sadeghi E, Peighambardoust NS, Chamani S, Aydemir U. Designing In Situ Grown Ternary Oxide/2D Ni-BDC MOF Nanocomposites on Nickel Foam as Efficient Electrocatalysts for Electrochemical Water Splitting. ACS MATERIALS AU 2023; 3:143-163. [PMID: 38089730 PMCID: PMC9999482 DOI: 10.1021/acsmaterialsau.2c00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 07/30/2024]
Abstract
The security of future energy, hydrogen, is subject to designing high-performance, stable, and low-cost electrocatalysts for hydrogen and oxygen evolution reactions (HERs and OERs), for the realization of efficient overall water splitting. Two-dimensional (2D) metal-organic frameworks (MOFs) introduce a large family of materials with versatile chemical and structural features for a variety of applications, such as supercapacitors, gas storage, and water splitting. Herein, a series of nanocomposites based on NCM/Ni-BDC@NF (N=Ni, C=Co, M:F=Fe, C=Cu, and Z=Zn, BDC: benzene dicarboxylic acid, NF: nickel foam) were directly developed on NF using a facile yet scalable solvothermal method. After coupling, the electronic structure of metallic atoms was well-modulated. Based on the XPS results, for the NCF/Ni-BDC, cationic atoms shifted to higher oxidation states, favorable for the OER. Conversely, for the NCZ/Ni-BDC and NCC/Ni-BDC nanocomposites, cationic atoms shifted to lower oxidation states, advantageous for the HER. The as-prepared NCF/Ni-BDC demonstrated prominent OER performance, requiring only 1.35 and 1.68 V versus a reversible hydrogen electrode to afford 10 and 50 mA cm-2 current densities, respectively. On the cathodic side, NCZ/Ni-BDC exhibited the best HER activity with an overpotential of 170 and 350 mV to generate 10 and 50 mA cm-2, respectively, under 1.0 M KOH medium. In a two-electrode alkaline electrolyzer, the assembled NCZ/Ni-BDC (cathode) ∥ NCF/Ni-BDC (anode) couple demanded a cell voltage of only 1.58 V to produce 10 mA cm-2. The stability of NCF/Ni-BDC toward OER was also exemplary, experiencing a continuous operation at 10, 20, and 50 mA cm-2 for nearly 45 h. Surprisingly, the overpotential after OER stability at 50 mA cm-2 dropped drastically from 450 to 200 mV. Finally, the faradaic efficiencies for the overall water splitting revealed the respective values of 100 and 85% for the H2 and O2 production at a constant current density of 20 mA cm-2.
Collapse
Affiliation(s)
- Ebrahim Sadeghi
- Koç
University Boron and Advanced Materials Applications and Research
Center (KUBAM), Sariyer, Istanbul34450, Turkey
- Graduate
School of Sciences and Engineering, Koç
University, Sariyer, Istanbul34450, Turkey
| | - Naeimeh Sadat Peighambardoust
- Koç
University Boron and Advanced Materials Applications and Research
Center (KUBAM), Sariyer, Istanbul34450, Turkey
| | - Sanaz Chamani
- Koç
University Boron and Advanced Materials Applications and Research
Center (KUBAM), Sariyer, Istanbul34450, Turkey
| | - Umut Aydemir
- Koç
University Boron and Advanced Materials Applications and Research
Center (KUBAM), Sariyer, Istanbul34450, Turkey
- Department
of Chemistry, Koç University, Sariyer, Istanbul34450, Turkey
| |
Collapse
|
10
|
Chen L, Zhao J, Meng A, Sun C, Wang L, Li G, Xie H, Hu M, Li Z. High capacity and stability induced by sandwich-like structure and metal–O configuration for CoNi2S4/Ti3C2Tx heterostructure electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Electronically regulated FeOOH/c-NiMoO4 with hierarchical sandwich structure as efficient electrode for oxygen evolution and hybrid supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|