1
|
Chu R, Zhang H, Huang W, Qiu F, Wang Y, Li Z, Jin X. Performance of 3D Network-Structured LiFePO 4@Li 3V 2(PO 4) 3/Carbon Nanofibers via Coaxial Electrospinning as Self-Supporting Cathode for Lithium-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1969. [PMID: 40363473 PMCID: PMC12072780 DOI: 10.3390/ma18091969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Lithium-ion batteries (LIBs) with high power, high capacity, and support for fast charging are increasingly favored by consumers. As a commercial electrode material for power batteries, LiFePO4 was limited from further wide application due to its low conductivity and lithium-ion diffusion rate. The development of advanced architectures integrating rational conductive networks with optimized ion transport pathways represents a critical frontier in optimizing the performance of cathode materials. In this paper, a novel self-supporting cathode material (designated as LFP@LVP-CES) was synthesized through an integrated coaxial electrospinning and controlled pyrolysis strategy. This methodology directly converts LiFePO4, Li3V2(PO4)3, and polyacrylonitrile (PAN)) into flexible, binder-free cathodes with a hierarchical structural organization. The 3D carbon nanofiber (CNF) matrix synergistically integrates LiFePO4 (Li/Fe/POx) and Li3V2(PO4)3 (Li/V/POx) nanoparticles, where CNFs act as a conductive scaffold to enhance electron transport, while the POx polyanionic frameworks stabilize Li+ diffusion pathways. Morphological characterizations (SEM and TEM) revealed a 3D cross-connected carbon nanofiber matrix (diameter: 250 ± 50 nm) uniformly embedded with active material particles. Electrochemical evaluations demonstrated that the LFP@LVP-CES cathode delivers an initial specific capacity of 165 mAh·g-1 at 0.1 C, maintaining 80 mAh·g-1 at 5 C. Notably, the material exhibited exceptional rate capability and cycling stability, demonstrating a 96% capacity recovery after high-rate cycling upon returning to 0.1 C, along with 97% capacity retention over 200 cycles at 1 C. Detailed kinetic analysis through EIS revealed significantly reduced Rct and increased Li+ diffusion. This superior electrochemical performance can be attributed to the synergistic effects between the 3D conductive network architecture and dual active materials. Compared with traditional coating processes and high-temperature calcination, the preparation of controllable electrospinning and low-temperature pyrolysis to some extent avoid the introduction of harmful substances and reduce raw material consumption and carbon emissions. This original integration strategy establishes a paradigm for designing freestanding electrode architectures through 3D structural design combined with a bimodal active material, providing critical insights for next-generation energy storage systems.
Collapse
Affiliation(s)
- Ruixia Chu
- Automotive Engineering College, Shandong Jiaotong University, Jinan 250357, China; (R.C.); (H.Z.); (F.Q.); (Y.W.); (Z.L.); (X.J.)
- Intelligent Testing and High-End Equipment of Automotive Power Systems, Shandong Province Engineering Research Center, Jinan 250357, China
- Jinan Engineering Research Center of Automotive Equipment and Technology, Jinan 250357, China
| | - Hongtao Zhang
- Automotive Engineering College, Shandong Jiaotong University, Jinan 250357, China; (R.C.); (H.Z.); (F.Q.); (Y.W.); (Z.L.); (X.J.)
| | - Wanyou Huang
- Automotive Engineering College, Shandong Jiaotong University, Jinan 250357, China; (R.C.); (H.Z.); (F.Q.); (Y.W.); (Z.L.); (X.J.)
- Intelligent Testing and High-End Equipment of Automotive Power Systems, Shandong Province Engineering Research Center, Jinan 250357, China
- Jinan Engineering Research Center of Automotive Equipment and Technology, Jinan 250357, China
| | - Fangyuan Qiu
- Automotive Engineering College, Shandong Jiaotong University, Jinan 250357, China; (R.C.); (H.Z.); (F.Q.); (Y.W.); (Z.L.); (X.J.)
- Intelligent Testing and High-End Equipment of Automotive Power Systems, Shandong Province Engineering Research Center, Jinan 250357, China
| | - Yan Wang
- Automotive Engineering College, Shandong Jiaotong University, Jinan 250357, China; (R.C.); (H.Z.); (F.Q.); (Y.W.); (Z.L.); (X.J.)
| | - Zhenyu Li
- Automotive Engineering College, Shandong Jiaotong University, Jinan 250357, China; (R.C.); (H.Z.); (F.Q.); (Y.W.); (Z.L.); (X.J.)
| | - Xiaoyue Jin
- Automotive Engineering College, Shandong Jiaotong University, Jinan 250357, China; (R.C.); (H.Z.); (F.Q.); (Y.W.); (Z.L.); (X.J.)
| |
Collapse
|
2
|
Wu X, Liu Y, Wang J, Tan Y, Liang Z, Zhou G. Toward Circular Energy: Exploring Direct Regeneration for Lithium-Ion Battery Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403818. [PMID: 38794816 DOI: 10.1002/adma.202403818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Lithium-ion batteries (LIBs) are rapidly developing into attractive energy storage technologies. As LIBs gradually enter retirement, their sustainability is starting to come into focus. The utilization of recycled spent LIBs as raw materials for battery manufacturing is imperative for resource and environmental sustainability. The sustainability of spent LIBs depends on the recycling process, whereby the cycling of battery materials must be maximized while minimizing waste emissions and energy consumption. Although LIB recycling technologies (hydrometallurgy and pyrometallurgy) have been commercialized on a large scale, they have unavoidable limitations. They are incompatible with circular economy principles because they require toxic chemicals, emit hazardous substances, and consume large amounts of energy. The direct regeneration of degraded electrode materials from spent LIBs is a viable alternative to traditional recycling technologies and is a nondestructive repair technology. Furthermore, direct regeneration offers advantages such as maximization of the value of recycled electrode materials, use of sustainable, nontoxic reagents, high potential profitability, and significant application potential. Therefore, this review aims to investigate the state-of-the-art direct LIB regeneration technologies that can be extended to large-scale applications.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International, Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuhang Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junxiong Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International, Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yihong Tan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International, Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
3
|
Jia K, Yang G, He Y, Cao Z, Gao J, Zhao H, Piao Z, Wang J, Abdelkader AM, Liang Z, Kumar RV, Zhou G, Ding S, Xi K. Degradation Mechanisms of Electrodes Promotes Direct Regeneration of Spent Li-Ion Batteries: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313273. [PMID: 38533901 DOI: 10.1002/adma.202313273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/20/2024] [Indexed: 03/28/2024]
Abstract
The rapid growth of electric vehicle use is expected to cause a significant environmental problem in the next few years due to the large number of spent lithium-ion batteries (LIBs). Recycling spent LIBs will not only alleviate the environmental problems but also address the challenge of limited natural resources shortages. While several hydro- and pyrometallurgical processes are developed for recycling different components of spent batteries, direct regeneration presents clear environmental, and economic advantages. The principle of the direct regeneration approach is restoring the electrochemical performance by healing the defective structure of the spent materials. Thus, the development of direct regeneration technology largely depends on the formation mechanism of defects in spent LIBs. This review systematically details the degradation mechanisms and types of defects found in diverse cathode materials, graphite anodes, and current collectors during the battery's lifecycle. Building on this understanding, principles and methodologies for directly rejuvenating materials within spent LIBs are outlined. Also the main challenges and solutions for the large-scale direct regeneration of spent LIBs are proposed. Furthermore, this review aims to pave the way for the direct regeneration of materials in discarded lithium-ion batteries by offering a theoretical foundation and practical guidance.
Collapse
Affiliation(s)
- Kai Jia
- Department of Applied Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guorui Yang
- Department of Applied Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yujia He
- Department of Applied Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenjiang Cao
- Department of Applied Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Juntao Gao
- Department of Applied Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongyang Zhao
- Department of Applied Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhihong Piao
- Tsinghua Shenzhen International Graduate School &Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Junxiong Wang
- Tsinghua Shenzhen International Graduate School &Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Amr M Abdelkader
- Faculty of Science and Technology, Bournemouth University, Poole House, Talbot Campus, Poole, Dorset, BH12 5BB, UK
| | - Zheng Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - R Vasant Kumar
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Guangmin Zhou
- Tsinghua Shenzhen International Graduate School &Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Shujiang Ding
- Department of Applied Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kai Xi
- Department of Applied Chemistry, School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, State Key Laboratory for Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
4
|
Zhang Q, Zhou Y, Tong Y, Chi Y, Liu R, Dai C, Li Z, Cui Z, Liang Y, Tan Y. Reduced Graphene Oxide Coating LiFePO 4 Composite Cathodes for Advanced Lithium-Ion Battery Applications. Int J Mol Sci 2023; 24:17549. [PMID: 38139376 PMCID: PMC10743949 DOI: 10.3390/ijms242417549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Recently, the application of LiFePO4 (LFP) batteries in electric vehicles has attracted extensive attention from researchers. This work presents a composite of LFP particles trapped in reduced graphene oxide (rGO) nanosheets obtained through the high-temperature reduction strategy. The obtained LiFePO4/rGO composites indicate spherical morphology and uniform particles. As to the structure mode of the composite, LFP distributes in the interlayer structure of rGO, and the rGO evenly covers the surface of the particles. The LFP/rGO cathodes demonstrate a reversible specific capacity of 165 mA h g-1 and high coulombic efficiency at 0.2 C, excellent rate capacity (up to 10 C), outstanding long-term cycling stability (98%) after 1000 cycles at 5 C. The combined high electron conductivity of the layered rGO coating and uniform LFP particles contribute to the remarkable electrochemical performance of the LFP/rGO composite. The unique LFP/rGO cathode provides a potential application in high-power lithium-ion batteries.
Collapse
Affiliation(s)
- Qingao Zhang
- School of Chemical Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yu Zhou
- School of Chemical Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yulong Tong
- School of Chemical Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yuting Chi
- School of Chemical Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ruhua Liu
- School of Chemical Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Changkai Dai
- School of Chemical Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhanqing Li
- School of Chemical Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhenli Cui
- School of Chemical Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yaohua Liang
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Yanli Tan
- School of Chemical Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Kim J, Song S, Lee CS, Lee M, Bae J. Prominent enhancement of stability under high current density of LiFePO 4-based multidimensional nanocarbon composite as cathode for lithium-ion batteries. J Colloid Interface Sci 2023; 650:1958-1965. [PMID: 37517195 DOI: 10.1016/j.jcis.2023.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
A facile method for synthesizing carbon-coated lithium iron phosphate (LiFePO4, LFP) and an LFP-based multidimensional nanocarbon composite to enhance the electrochemical performance of lithium-ion batteries is presented herein. Three types of cathode materials are prepared: carbon-coated LFP (LC), carbon-coated LFP with carbon nanotubes (LC@C), and carbon-coated LFP with carbon nanotubes/graphene quantum dots (LC@CG). The electrochemical performances of the LC-nanocarbon composites are compared, and both LC@C and LC@CG show improved electrochemical performance than LC. Compared with both the LC and LC@C electrodes, the LC@CG electrode exhibits the highest specific capacity of 107.1 mA h g-1 under 20C of current density, as well as higher capacities and greater stability over all measured current densities. Moreover, after 300 charge-discharge cycles, the LC@CG electrode exhibits the best stability than the LC and LC@C electrodes. This is attributable to the graphene quantum dots, which enhance the morphological stability of the LC@CG electrode during electrochemical measurements. Our findings suggest that LFP-nanocarbon composites are promising as cathode materials and highlight the potential of graphene quantum dots for improving the stability of cathodes.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Nanoscience and Technology (Nano-physics), Gachon University, 1342 Seungnam-daero, Sujeong-gu, Sengnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Seunghyun Song
- Department of Nanoscience and Technology (Nano-physics), Gachon University, 1342 Seungnam-daero, Sujeong-gu, Sengnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Churl Seung Lee
- Nano Convergence Technology Research Center, Korea Electronics Technology Institute, 25 Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13509, Republic of Korea
| | - Minbaek Lee
- Department of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Joonho Bae
- Department of Nanoscience and Technology (Nano-physics), Gachon University, 1342 Seungnam-daero, Sujeong-gu, Sengnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|