1
|
Lábadi Z, Ismaeel NT, Petrik P, Fried M. Electrochromic Efficiency in A xB (1-x)O y-Type Mixed Metal Oxide Alloys. Int J Mol Sci 2025; 26:3547. [PMID: 40332003 PMCID: PMC12026796 DOI: 10.3390/ijms26083547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 05/08/2025] Open
Abstract
Electrochromic materials have a wide range of energy-effective applications, such as in mirrors, smart windows, automobile sunroofs, and display devices. The electrochromic behavior of mixed metal oxides is focused on in this review. Extra heat absorbed by buildings is one of the major problems in our modern era, so electrochromic films have been used as components of smart windows to reduce heat absorption through glass windows. Transition metal (W, V, Ti, Mo, and Ni) oxides are considered popular electrochromic materials for this purpose. Smart windows consist of electrochromic material layers (such as metal oxide layers) and solid electrolytes sandwiched between transparent conductive layers. Few publications have studied the use of mixtures of different metal oxides as electrochromic materials. This study focuses on the results of investigations of such multicomponent materials, such as the effects on the electrochromic properties of mixed metal oxides and how they contrast with pure metal oxides. Reviewing these papers, we found WO3- and MoO3-based mixtures to be the most promising, especially the magnetron-sputtered, amorphous WO3(40%)-MoO3(60%) composition, which had 200-300 cm2/C coloration efficiency. The mixed oxide materials reported in this review have room for development (and even commercialization) in the oxide-based electrochromic device market.
Collapse
Affiliation(s)
- Zoltán Lábadi
- Institute of Technical Physics & Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Rd. 29-33, 1121 Budapest, Hungary; (Z.L.); (P.P.)
| | - Noor Taha Ismaeel
- Doctoral School on Materials Sciences and Technologies, Óbuda University, 1034 Budapest, Hungary;
- Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad 10070, Iraq
| | - Péter Petrik
- Institute of Technical Physics & Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Rd. 29-33, 1121 Budapest, Hungary; (Z.L.); (P.P.)
- Department of Electrical Engineering, Institute of Physics, Faculty of Science and Technology, University of Debrecen, Bem tér 18, 4026 Debrecen, Hungary
| | - Miklós Fried
- Institute of Technical Physics & Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Rd. 29-33, 1121 Budapest, Hungary; (Z.L.); (P.P.)
- Institute of Microelectronics and Technology, Óbuda University, Tavaszmezo Str. 17, 1084 Budapest, Hungary
| |
Collapse
|
2
|
Xu M, Wu T, Yin K, Li L, Li Y, Zhao X, Lu L, Gu J, Wang D. Organic Dye Molecule Intercalated Prussian Blue for Simultaneously Enhancing Coloration Efficiency and Energy Storage Capacity in Electrochromic Battery. SMALL METHODS 2025; 9:e2401188. [PMID: 39400970 DOI: 10.1002/smtd.202401188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Indexed: 10/15/2024]
Abstract
The dual-functional device combining electrochromic properties and energy storage has gained numerous attentions in the field of energy-saving smart electronics. However, achieving simultaneous optimization of coloration efficiency and energy storage capacity of materials poses a significant challenge. This study presents a novel approach by incorporating methyl orange into Prussian blue channels (PB-MO films) to adjust the internal electronic structure of Prussian blue. This modification allows the active layer to simultaneously improve the electrochromic and energy storage performance. The introduction of methyl orange not only alters the ratio of Fe3+/Fe2+ within the framework through the coordination reaction of Fe3+ with methyl orange, but also improves the reaction kinetics after intercalating organic dye molecules, including charge transfer resistance, diffusion capability of ions and capacitive contribution. The PB-MO films demonstrate remarkable properties: high optical contrast (81.4% at 670 nm), excellent coloration efficiency (265 cm2 C-1), and significant specific capacity (84 mAh m-2 at 0.05 A m-2), outperforming pure PB films. The PB-MO films are ideally suited for applications in displays and intelligent energy storage fields, boasting both high coloration efficiency and substantial energy storage capacity, thus advancing promote the development of dual-functional electrochromic devices.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Tianhui Wu
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Ke Yin
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Lei Li
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yuhang Li
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Xiaoyu Zhao
- Department of Food and Pharmaceutical Engineering, Suihua University, Suihua, 152000, P. R. China
| | - Li Lu
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jianmin Gu
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Desong Wang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
- School of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| |
Collapse
|
3
|
Lu D, Li J, Zhang D, Li L, Tong Z, Ji H, Wang J, Chi C, Qu HY. Layer-by-Layer-Assembled Polyaniline/MXene Thin Film and Device for Improved Electrochromic and Energy Storage Capabilities. ACS APPLIED POLYMER MATERIALS 2024; 6:12492-12502. [PMID: 39479342 PMCID: PMC11519834 DOI: 10.1021/acsapm.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
Polyaniline (PANI) is an attractive electrochromic and storage material due to its reversible and sustainable electrochemical redox processes. However, the insufficient surface area and excessive charge intercalation after long-term cycling results in limited charge capacitance and unsatisfactory cycling stability. In this work, we demonstrate an innovative method to increase PANI's electrochromic and energy storage performance by incorporating MXene, to enhance electrochemical activity and reveal more active areas of ion/electron intercalation/deintercalation and charge transfer. The hydrogen bonds formed between N-H, C-H, and C-N of PANI and -OH and -O surface functional terminations of MXene further enhance the interface interaction. With substantial optical transmittance modulation and charge capacitance, excellent coloration efficiency, and outstanding durability, the PANI/MXene thin film demonstrates exceptional color-switching and energy storage characteristics. Furthermore, the sandwich device with a PANI/MXene thin film as the positive electrode and zinc foil as the negative electrode demonstrates exceptional electrochromic and Zn2+ storage capability. This work raises possibilities for next-generation intelligent energy conversion and storage technologies and offers fresh perspectives on the design of ionic devices.
Collapse
Affiliation(s)
- Dejuan Lu
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jian Li
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Dashui Zhang
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Lina Li
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhangfa Tong
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongbing Ji
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Junxin Wang
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles
Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Caixia Chi
- Heilongjiang
Province Key Laboratory of Environmental Catalysis and Energy Storage
Materials, Food and Pharmaceutical Engineering College, Suihua University, Suihua 152061, China
| | - Hui-Ying Qu
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Santos JF, del Rocío Silva-Calpa L, de Souza FG, Pal K. Central Countries' and Brazil's Contributions to Nanotechnology. CURRENT NANOMATERIALS 2024; 9:109-147. [DOI: 10.2174/2405461508666230525124138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/09/2023] [Accepted: 03/14/2023] [Indexed: 01/05/2025]
Abstract
Abstract:
Nanotechnology is a cornerstone of the scientific advances witnessed over the past few
years. Nanotechnology applications are extensively broad, and an overview of the main trends
worldwide can give an insight into the most researched areas and gaps to be covered. This document
presents an overview of the trend topics of the three leading countries studying in this area, as
well as Brazil for comparison. The data mining was made from the Scopus database and analyzed
using the VOSviewer and Voyant Tools software. More than 44.000 indexed articles published
from 2010 to 2020 revealed that the countries responsible for the highest number of published articles
are The United States, China, and India, while Brazil is in the fifteenth position. Thematic
global networks revealed that the standing-out research topics are health science, energy,
wastewater treatment, and electronics. In a temporal observation, the primary topics of research are:
India (2020), which was devoted to facing SARS-COV 2; Brazil (2019), which is developing promising
strategies to combat cancer; China (2018), whit research on nanomedicine and triboelectric
nanogenerators; the United States (2017) and the Global tendencies (2018) are also related to the
development of triboelectric nanogenerators. The collected data are available on GitHub. This study
demonstrates the innovative use of data-mining technologies to gain a comprehensive understanding
of nanotechnology's contributions and trends and highlights the diverse priorities of nations in
this cutting-edge field.
Collapse
Affiliation(s)
- Jonas Farias Santos
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leydi del Rocío Silva-Calpa
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Gomes de Souza
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Macromoléculas Professora Eloisa Mano, Centro de
Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kaushik Pal
- University Center
for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana - Chandigarh State
Hwy, Mohali, Gharuan, 140413 Punjab, India
| |
Collapse
|
5
|
Li J, Yu H, Lv Y, Cai Z, Shen Y, Ruhlmann L, Gan L, Liu M. Electrode materials for electrochromic supercapacitors. NANOTECHNOLOGY 2024; 35:152001. [PMID: 38150723 DOI: 10.1088/1361-6528/ad18e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Smart energy storage systems, such as electrochromic supercapacitor (ECSC) integrated technology, have drawn a lot of attention recently, and numerous developments have been made owing to their reliable performance. Developing novel electrode materials for ECSCs that embed two different technologies in a material is an exciting and emerging field of research. To date, the research into ECSC electrode materials has been ongoing with excellent efforts, which need to be systematically reviewed so that they can be used to develop more efficient ECSCs. This mini-review provides a general composition, main evaluation parameters and future perspectives for electrode materials of ECSCs as well as a brief overview of the published reports on ECSCs and performance statistics on the existing literature in this field.
Collapse
Affiliation(s)
- Jianhang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Hangzhou Plastics Industry Co., Ltd, Hangzhou, People's Republic of China
| | - Haixin Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhiwei Cai
- Zhejiang Institute for Food and Drug Control, Key Laboratory of Drug Contacting Materials Quality Control of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yimin Shen
- Shaoxing Jinye Environmental Protection Technology Co., Ltd, No. 173, Zhenghai Road, Binhai Industrial Zone, Keqiao District, Shaoxing, 312073, People's Republic of China
| | - Laurent Ruhlmann
- Institut de Chimie (UMR au CNRS n°7177), Université de Strasbourg, 4 rue Blaise Pascal CS 90032, F-67081 Strasbourg Cedex, France
| | - Lihua Gan
- Hangzhou Plastics Industry Co., Ltd, Hangzhou, People's Republic of China
| | - Mingxian Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Zhou Y, Sha T, Liu D, Liao B, Li K. Molecularly imprinted ratiometric fluorescence detection of tetracycline based on its fluorescence enhancement effect caused by tungsten trioxide quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122248. [PMID: 36580750 DOI: 10.1016/j.saa.2022.122248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
This paper reports a novel probe developed based on the tungsten trioxide quantum dots (WO3-x QDs) and molecularly imprinted polymers for the detection of trace tetracycline (TC) in the complex food matrix. Tungsten ion (W6+) in WO3-x QDs has a fluorescence enhancement effect on TC, and TC has a fluorescence quenching effect on WO3-x QDs. The blue emission of the WO3-x QDs (λem = 470 nm) as a reference and the yellow emission of the TC (λem = 550 nm) as a response were utilized for the ratiometric fluorescence detection. In order to improve its selectivity, the molecular imprinting technology was combined to construct molecularly imprinted ratiometric fluorescent probes (MIRFPs). Therefore, the MIRFPs can not only selectively detect TC, but also realize the visual detection from blue to yellow. Under the optimal conditions, the linear ranges of 0.01 ∼ 10.0 μmol/L and 20.0 ∼ 80.0 μmol/L were obtained with the limits of detection of 3.23 nmol/L and 6.37 μmol/L, respectively. Furthermore, the MIRFPs had been successfully applied to the detection of TC in milk and eggs. The satisfactory recoveries were in the range of 92.7 ∼ 102.9 % with relative standard deviations (RSD, n = 3) below 1.59 %. This work offers a good strategy for the detection of food hazards.
Collapse
Affiliation(s)
- Yingjie Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianjian Sha
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dong Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Baowen Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Hu P, Hu P, Vu TD, Li M, Wang S, Ke Y, Zeng X, Mai L, Long Y. Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications. Chem Rev 2023; 123:4353-4415. [PMID: 36972332 PMCID: PMC10141335 DOI: 10.1021/acs.chemrev.2c00546] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Vanadium oxides with multioxidation states and various crystalline structures offer unique electrical, optical, optoelectronic and magnetic properties, which could be manipulated for various applications. For the past 30 years, significant efforts have been made to study the fundamental science and explore the potential for vanadium oxide materials in ion batteries, water splitting, smart windows, supercapacitors, sensors, and so on. This review focuses on the most recent progress in synthesis methods and applications of some thermodynamically stable and metastable vanadium oxides, including but not limited to V2O3, V3O5, VO2, V3O7, V2O5, V2O2, V6O13, and V4O9. We begin with a tutorial on the phase diagram of the V-O system. The second part is a detailed review covering the crystal structure, the synthesis protocols, and the applications of each vanadium oxide, especially in batteries, catalysts, smart windows, and supercapacitors. We conclude with a brief perspective on how material and device improvements can address current deficiencies. This comprehensive review could accelerate the development of novel vanadium oxide structures in related applications.
Collapse
|
8
|
Sea-Cucumber-like Microstructure Polyoxometalate/TiO2 Nanocomposite Electrode for High-Performance Electrochromic Energy Storage Devices. Molecules 2023; 28:molecules28062634. [PMID: 36985606 PMCID: PMC10058481 DOI: 10.3390/molecules28062634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
The key challenge in the practical application of electrochromic energy storage devices (EESDs) is the fabrication of high-performance electrode materials. Herein, we deposited K7[La(H2O)x(α2-P2W17O61)] (P2W17La) onto TiO2 nanowires (NW) to construct an NW–P2W17La nanocomposite using a layer-by-layer self-assembly method. In contrast to the pure P2W17La films, the nanocomposite exhibits enhanced electrochromic and electrochemical performance owing to the 3D sea-cucumber-like microstructure. An EESD using the NW–P2W17La film as the cathode exhibited outstanding electrochromic and energy storage properties, with high optical modulation (48.6% at 605 nm), high switching speeds (tcoloring = 15 s, tbleaching = 4 s), and high area capacitance (5.72 mF cm−2 at 0.15 mA cm−2). The device can reversibly switch between transparent and dark blue during the charge/discharge process, indicating that electrochromic contrast can be used as a quantitative indicator of the energy storage status.
Collapse
|
9
|
Zhang Z, Chen H, Lin Z, Guan X, Zhang J, Tang X, Zhan Y, Luo J. Pivotal Role of the Granularity Uniformity of the WO 3 Film Electrode upon the Cyclic Stability during Cation Insertion/Extraction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:973. [PMID: 36985868 PMCID: PMC10057934 DOI: 10.3390/nano13060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Delicate design and precise manipulation of electrode morphology has always been crucial in electrochemistry. Generally, porous morphology has been preferred due to the fast kinetic transport characteristics of cations. Nevertheless, more refined design details such as the granularity uniformity that usually goes along with the porosity regulation of film electrodes should be taken into consideration, especially in long-term cation insertion and extraction. Here, inorganic electrochromism as a special member of the electrochemical family and WO3 films as the most mature electrochromic electrode material were chosen as the research background. Two kinds of WO3 films were prepared by magnetron sputtering, one with a relatively loose morphology accompanied by nonuniform granularity and one with a compact morphology along with uniform particle size distribution, respectively. Electrochemical performances and cyclic stability of the two film electrodes were then traced and systematically compared. In the beginning, except for faster kinetic transport characters of the 50 W-deposited WO3 film, the two electrodes showed equivalent optical and electrochemical performances. However, after 5000 CV cycles, the 50 W-deposited WO3 film electrode cracked seriously. Strong stress distribution centered among boundaries of the nonuniform particle clusters together with the weak bonding among particles induced the mechanical damage. This discovery provides a more solid background for further delicate film electrode design.
Collapse
Affiliation(s)
- Zhaocheng Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Haoyuan Chen
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Zicong Lin
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Xiongcong Guan
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Jiong Zhang
- School of Civil Engineering and Architecture, Wuyi University, Jiangmen 529020, China
| | - Xiufeng Tang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
- Research Center of Flexible Sensing Materials and Device Application Technology, Wuyi University, Jiangmen 529020, China
| | - Yunfeng Zhan
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
- Research Center of Flexible Sensing Materials and Device Application Technology, Wuyi University, Jiangmen 529020, China
| | - Jianyi Luo
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
- Research Center of Flexible Sensing Materials and Device Application Technology, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
10
|
A hydrogel electrolyte based on hydroxypropyl methylcellulose modified polyacrylamine for efficient electrochromic energy storage devices. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Application of Tungsten-Oxide-Based Electrochromic Devices for Supercapacitors. APPLIED SYSTEM INNOVATION 2022. [DOI: 10.3390/asi5040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For making full use of the discoloration function of electrochromic (EC) devices and better show the charge and discharge states of supercapacitors (SCs), electrochromic supercapacitors (ECSCs) have attracted much attention and expectations in recent years. The research progress of tungsten-oxide-based electrochromic supercapacitors (ECSCs) in recent years is reviewed in this paper. Nanostructured tungsten oxide is widely used to facilitate ion implantation/extraction and increase the porosity of the electrode. The low-dimensional nanostructured tungsten oxide was compared in four respects: material scale, electrode life, coloring efficiency, and specific capacitance. Due to the mechanics and ductility of nano-tungsten oxide electrodes, they are very suitable for the preparation of flexible ECSCs. With the application of an organic protective layer and metal nanowire conductive electrode, the device has higher coloring efficiency and a lower activation voltage. Finally, this paper indicates that in the future, WO3-based ECSCs will develop in the direction of self-supporting power supply to meet the needs of use.
Collapse
|