1
|
Xing H, Zhang K, Chang R, Wen Z, Xu Y. Integrating CoP/Co heterojunction into nitrogen-doped carbon polyhedrons as electrocatalysts to promote polysulfides conversion in lithium-sulfur batteries. J Colloid Interface Sci 2025; 677:181-193. [PMID: 39142159 DOI: 10.1016/j.jcis.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Lithium-sulfur (Li-S) batteries have garnered extensive research interest as one of the most promising energy storage devices due to their ultra-high theoretical energy density. However, the sluggish reaction kinetics, abominable shuttling effect and inferior cycling stability severely restrict its practical application. Herein, a multifunctional CoP/Co@NC/CNT heterostructure host material was elaborately designed and synthesized by integrating CoP/Co heterojunction, N-doped carbon hollow polyhedrons (NC) and carbon nanotubes (CNTs). Specifically, the CoP/Co heterojunction can reconfigure the local electronic structure, resulting in a synergistic effect that enhances adsorption capacity and catalytic activity compared to CoP and Co alone. Furthermore, the CNTs-grafted NC not only provides multi-dimensional pathways for rapid electron transport and ion diffusion, but also physically restricts the diffusion of polysulfides during charge-discharge processes. Owing to these advantages, the battery assembled with the CoP/Co@NC/CNT/S cathode yields an impressive discharge specific capacity of 1479.9 mAh g-1 at 0.1C, and excellent capacity retention of 793.7 mAh g-1 over 500 cycles at 2C (∼85.5 % of initial capacity). The rational integration of multifunctional heterostructures could provide an effective strategy for designing high-efficiency nanocomposite electrocatalysts to promote sulfur redox kinetics in Li-S batteries.
Collapse
Affiliation(s)
- Haiyang Xing
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rui Chang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ziqi Wen
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Youlong Xu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Feng P, Wu Q, Rodriguez Ayllon Y, Lu Y. Precisely Designed Ultra-Small CoP Nanoparticles-Decorated Hollow Carbon Nanospheres as Highly Efficient Host in Lithium-Sulfur Batteries. Chemistry 2024; 30:e202401345. [PMID: 38837813 DOI: 10.1002/chem.202401345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Designing porous carbon materials with metal phosphides as host materials holds promise for enhancing the cyclability and durability of lithium-sulfur (Li-S) batteries by mitigating sulfur poisoning and exhibiting high electrocatalytic activity. Nevertheless, it is urgent to precisely control the size of metal phosphides to further optimize the polysulfide conversion reaction kinetics of Li-S batteries. Herein, a subtlety regulation strategy was proposed to obtain ultra-small CoP nanoparticles-decorated hollow carbon nanospheres (CoP@C) by using spherical polyelectrolyte brush (SPB) as the template with stabilizing assistance from polydopamine coating, which also works as carbon source. Leveraging the electrostatic interaction between SPB and Co2+, ultra-small Co particles with sizes measuring 5.5±2.6 nm were endowed after calcination. Subsequently, through a gas-solid phosphating process, these Co particles were converted into CoP nanoparticles with significantly finer sizes (7.1±3.1 nm) compared to state-of-the-art approaches. By uniformly distributing the electrocatalyst nanoparticles on hollow carbon nanospheres, CoP@C facilitated the acceleration of Li-ion diffusion and enhanced the conversion reaction kinetics of polysulfides through adsorption-diffusion synergy. As a result, Li-S batteries utilizing the CoP@C/S cathode demonstrated an initial specific discharge capacity of 850.0 mAh g-1 at 1.0 C, with a low-capacity decay rate of 0.03 % per cycle.
Collapse
Affiliation(s)
- Ping Feng
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, 14109, Germany
| | - Qingping Wu
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, 14109, Germany
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yael Rodriguez Ayllon
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, 14109, Germany
| | - Yan Lu
- Institute of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, 14109, Germany
- Institute for Technical and Environmental Chemistry, Friedrich-Schiller-Universität Jena, Jena, 07743, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Jena, 07743, Germany
| |
Collapse
|
3
|
Liu H, Li R, Yang T, Wang J. Construction of SnS 2-modified multi-hole carbon nanofibers with sulfur encapsulated as free-standing cathode electrode for lithium sulfur battery. NANOTECHNOLOGY 2024; 35:215402. [PMID: 38377620 DOI: 10.1088/1361-6528/ad2b49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
Lithium-sulfur (Li-S) batteries exhibit a huge potential in energy storage devices for the thrilling theoretical energy density (2600 Wh kg-1). Nevertheless, the serious shuttle effect rooted in polysulfides and retardative hysteresis reaction kinetics results in inferior cycling and rate performances of Li-S batteries, impeding commercial applications. In order to further promote the energy storage abilities of Li-S batteries, a unique binder-free sulfur carrier consisting of SnS2-modified multi-hole carbon nanofibers (SnS2-MHCNFs) has been constructed, where MHCNFs can offer abundant space to accommodate high-level sulfur and SnS2can promote the adsorption and catalyst capability of polysulfides, synergistically promoting the lithium-ion storage performances of Li-S batteries. After sulfur loading (SnS2-MHCNFs@S), the material was directly applied as a cathode electrode of the Li-S battery. The SnS2-MHCNFs@S electrode maintained a good discharge capacity of 921 mAh g-1after 150 cycles when the current density was 0.1 C (1 C = 1675 mA g-1), outdistancing the MHCNFs@S (629 mAh g-1) and CNFs@S (249 mAh g-1) electrodes. Meanwhile, the SnS2-MHCNFs@S electrode still exhibited a discharge capacity of 444 mAh g-1at 2 C. The good performance of SnS2-MHCNFs@S electrode indicates that combining multihole structure designation and polar material modification are highly effective methods to boost the performances of Li-S batteries.
Collapse
Affiliation(s)
- Hanyu Liu
- College of Science, Central South University of Forestry and Technology, Changsha 410004, People's Republic of China
| | - RuiXue Li
- College of Science, Central South University of Forestry and Technology, Changsha 410004, People's Republic of China
| | - Ting Yang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, People's Republic of China
| | - Juntao Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, People's Republic of China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, People's Republic of China
| |
Collapse
|
4
|
Wang F, Han Y, Feng X, Xu R, Li A, Wang T, Deng M, Tong C, Li J, Wei Z. Mesoporous Carbon-Based Materials for Enhancing the Performance of Lithium-Sulfur Batteries. Int J Mol Sci 2023; 24:ijms24087291. [PMID: 37108464 PMCID: PMC10138428 DOI: 10.3390/ijms24087291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
The most promising energy storage devices are lithium-sulfur batteries (LSBs), which offer a high theoretical energy density that is five times greater than that of lithium-ion batteries. However, there are still significant barriers to the commercialization of LSBs, and mesoporous carbon-based materials (MCBMs) have attracted much attention in solving LSBs' problems, due to their large specific surface area (SSA), high electrical conductivity, and other unique advantages. The synthesis of MCBMs and their applications in the anodes, cathodes, separators, and "two-in-one" hosts of LSBs are reviewed in this study. Most interestingly, we establish a systematic correlation between the structural characteristics of MCBMs and their electrochemical properties, offering recommendations for improving performance by altering the characteristics. Finally, the challenges and opportunities of LSBs under current policies are also clarified. This review provides ideas for the design of cathodes, anodes, and separators for LSBs, which could have a positive impact on the performance enhancement and commercialization of LSBs. The commercialization of high energy density secondary batteries is of great importance for the achievement of carbon neutrality and to meet the world's expanding energy demand.
Collapse
Affiliation(s)
- Fangzheng Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Yuying Han
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Xin Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Rui Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Ang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Mingming Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Cheng Tong
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| |
Collapse
|
5
|
Cheng Z, Cong Z, Yang C, Wang K, Fan XY, Zhao B, Han X. Bilayer functional interlayer coupling defect and Li-ion channel for high-performance Li-S batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|