1
|
Shahmohammadi A, Dalvand S, Molaei A, Mousavi-Khoshdel SM, Yazdanfar N, Hasanzadeh M. Transition metal phosphide/ molybdenum disulfide heterostructures towards advanced electrochemical energy storage: recent progress and challenges. RSC Adv 2025; 15:13397-13430. [PMID: 40297000 PMCID: PMC12035537 DOI: 10.1039/d5ra01184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Transition metal phosphide @ molybdenum disulfide (TMP@MoS2) heterostructures, consisting of TMP as the core main catalytic body and MoS2 as the outer shell, can solve the three major problems in the field of renewable energy storage and catalysis, such as lack of resources, cost factors, and low cycling stability. The heterostructures synergistically combine the excellent conductivity and electrochemical performance of transition metal phosphides with the structural robustness and catalytic activity of molybdenum disulfide, which holds great promise for clean energy. This review addresses the advantages of TMP@MoS2 materials and their synthesis methods-e.g., hydrothermal routes and chemical vapor deposition regarding scalability and cost. Their electrochemical energy storage and catalytic functions e.g., hydrogen and oxygen evolution reactions (HER and OER) are also extensively explored. Their potential within battery and supercapacitor technologies is also assessed against leading performance metrics. Challenges toward industry-scale scalability, longevity, and environmental sustainability are also addressed, as are optimization and large-scale deployment strategies.
Collapse
Affiliation(s)
- Ali Shahmohammadi
- Faculty of Chemistry, Kharazmi University 43 South Mofatteh Avenue Tehran Iran
| | - Samad Dalvand
- Iranian Research & Development Center for Chemical Industries (IRDCI), Academic Center for Education, Culture and Research (ACECR) Karaj Iran
| | - Amirhossein Molaei
- Faculty of Petroleum and Natural Gas Engineering, Sahand University of Technology Tabriz Iran
| | | | - Najmeh Yazdanfar
- Iranian Research & Development Center for Chemical Industries (IRDCI), Academic Center for Education, Culture and Research (ACECR) Karaj Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
2
|
Khoo V, Ng SF, Haw CY, Ong WJ. Additive Manufacturing: A Paradigm Shift in Revolutionizing Catalysis with 3D Printed Photocatalysts and Electrocatalysts Toward Environmental Sustainability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401278. [PMID: 38634520 DOI: 10.1002/smll.202401278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Semiconductor-based materials utilized in photocatalysts and electrocatalysts present a sophisticated solution for efficient solar energy utilization and bias control, a field extensively explored for its potential in sustainable energy and environmental management. Recently, 3D printing has emerged as a transformative technology, offering rapid, cost-efficient, and highly customizable approaches to designing photocatalysts and electrocatalysts with precise structural control and tailored substrates. The adaptability and precision of printing facilitate seamless integration, loading, and blending of diverse photo(electro)catalytic materials during the printing process, significantly reducing material loss compared to traditional methods. Despite the evident advantages of 3D printing, a comprehensive compendium delineating its application in the realm of photocatalysis and electrocatalysis is conspicuously absent. This paper initiates by delving into the fundamental principles and mechanisms underpinning photocatalysts electrocatalysts and 3D printing. Subsequently, an exhaustive overview of the latest 3D printing techniques, underscoring their pivotal role in shaping the landscape of photocatalysts and electrocatalysts for energy and environmental applications. Furthermore, the paper examines various methodologies for seamlessly incorporating catalysts into 3D printed substrates, elucidating the consequential effects of catalyst deposition on catalytic properties. Finally, the paper thoroughly discusses the challenges that necessitate focused attention and resolution for future advancements in this domain.
Collapse
Affiliation(s)
- Valerine Khoo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Sue-Faye Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Choon-Yian Haw
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Gulei Innovation Institute, Xiamen University, Zhangzhou, 363200, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| |
Collapse
|
3
|
Low temperature plasma-assisted synthesis and modification of water splitting electrocatalysts. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
4
|
Cui M, Yan Z, Zhang M, Jia S, Zhang Y. Ultrasound-assisted Synthesis of nickel/nickel Phosphide on Carbon Nanotubes as Highly Effective Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|