1
|
Li H, Chen N, Liu T, Wang R, Gao X, Guo L, Chen H, Shi R, Gao W, Bai Y. Modification of LiMn 2O 4 Cathodes to Boost Kinetics Match via rGO for High-Performance Rocking-Chair Lithium-Ion Capacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44697-44705. [PMID: 39152898 DOI: 10.1021/acsami.4c06850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The rocking-chair lithium-ion capacitors (RLICs), composed of a battery-type cathode and capacitive-type anode, alleviates the issue of increased internal resistance caused by electrolyte consumption during the cycling process of the lithium-ion capacitors (LICs). However, the poor conductivity of cathode materials and the mismatch between the cathode and anode are the key issues that hinder its commercial application. In this work, a modification simplification strategy is proposed to tailor the conductivity of the cathode and matching characteristic with the anode. The in situ grown lithium manganate (LMO) is featured with a three-dimensional conductive network constructed by reduced graphene oxide (rGO). The optimized LMO/rGO composite cathode demonstrates an excellent rate performance, lithium-ion diffusion rate, and cycling performance. After assembling an RLICs with activated carbon (AC), the RLICs exhibits an energy density of as high as 239.11 Wh/kg at a power density of 400 W/kg. Even at a power density of 200 kW/kg, its energy density can maintain at 39.9 Wh/kg. These excellent electrochemical performances are mainly attributed to the compounding of LMO with rGO, which not only improves the conductivity of the cathode but also realizes a better matching with the capacitive-type anode. This modification strategy provides a reference for the further development of energy storage devices suitable for actual production conditions and application scenarios.
Collapse
Affiliation(s)
- Haoquan Li
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, 730000 Gansu Province, China
| | - Nuo Chen
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, 730000 Gansu Province, China
| | - Tianfu Liu
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, 730000 Gansu Province, China
| | - Ruiting Wang
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, 730000 Gansu Province, China
| | - Xiang Gao
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, 730000 Gansu Province, China
| | - Longlong Guo
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, 730000 Gansu Province, China
| | - Huqiang Chen
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, 730000 Gansu Province, China
| | - Rongrong Shi
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, 730000 Gansu Province, China
| | - Wensheng Gao
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, 730000 Gansu Province, China
| | - Yongxiao Bai
- Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, School of Materials and Energy, Lanzhou University, Lanzhou City, 730000 Gansu Province, China
| |
Collapse
|
2
|
Cao J, Yan C, Chai Z, Wang Z, Du M, Li G, Wang H, Deng H. Laser-induced transient conversion of rhodochrosite/polyimide into multifunctional MnO 2/graphene electrodes for energy storage applications. J Colloid Interface Sci 2024; 653:606-616. [PMID: 37738933 DOI: 10.1016/j.jcis.2023.09.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Laser-induced graphene (LIG) has been extensively investigated for electrochemical energy storage due to its easy synthesis and highly conductive nature. However, the limited charge accumulation in LIG usually leads to significantly low energy densities. In this work, we report a novel strategy to directly transform natural rhodochrosite into ultrafine manganese dioxide (MnO2) nanoparticles (NPs) in the polyimide (PI) substrate for high-performance micro-supercapacitors (MSCs) and lithium-ion batteries (LIBs) through a scalable and cost-effective laser processing method. Specifically, laser treatment on rhodochrosite/polyimide precursors induces the thermal explosion, which splits rhodochrosite (10 μm) into MnO2 NPs (12-16 nm) on the carbon matrix of LIG due to the sputtering effect. Benefiting from largely exposed active sites from the ultrafine MnO2 and the synergetic effect from highly conductive LIG, the MnO2/LIG MSCs show a high specific capacitance of 544.0 F g-1 (154.3 mF cm-2; 14.16 F cm-3) at 3 A/g and 82.1% capacitance retention after 10,000 cycles at 5A/g, in contrast to pure LIG (<100 F g-1). Moreover, the MnO2/LIG-based LIBs show the highest reversible discharge capacity of ∼1097 mAh g-1 at 0.2 A/g and ∼ 866.4 mAh g-1 at 1.0 A/g. This study opens a new route for synthesizing novel LIG-based composites from natural minerals.
Collapse
Affiliation(s)
- Jun Cao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chunjie Yan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zefan Chai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhigang Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Minghe Du
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Gen Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Heng Deng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; Shenzhen Research Institute, China University of Geosciences, Shenzhen 518000, China.
| |
Collapse
|
3
|
Zheng Y, Xu Y, Guo J, Li J, Shen J, Guo Y, Bao X, Huang Y, Zhang Q, Xu J, Wu J, Ian H, Shao H. Cobalt sulfide nanoparticles restricted in 3D hollow cobalt tungstate nitrogen-doped carbon frameworks incubating stable interfaces for Li-ion storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|