1
|
Du K, Zhang D, Wu X, Shi P, Zhang S. Hierarchical electrodes with superior cycling performance using porous material based on cellulose nanofiber as flexible substrate. Carbohydr Polym 2024; 345:122590. [PMID: 39227126 DOI: 10.1016/j.carbpol.2024.122590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
The development and application of flexible electrodes with extended cycle life have long been a focal point in the field of energy research. In this study, positively charged polyethylene imine (PEI) and conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with negative charge were alternately deposited onto a cellulose nanofiber (CNF) porous material utilizing pressure gradient-assisted layer-by-layer (LbL) self-assembly technology. The flexible substrate, characterized by a three-dimensional porous structure reinforced with stiff CNF, not only facilitated high charge storage but also enhanced the electrode's cycling life by reducing the volume changes of PEDOT:PSS. Furthermore, the exceptional wettability of PEI by the electrolyte could promote efficient charge transport within the electrode. The electrode with 10 PEI/PEDOT:PSS bilayer exhibits a capacitance of 63.71 F g-1 at the scan rate of 5 mV s-1 and a remarkable capacitance retention of 128 % after 3000 charge-discharge cycles. The investigation into the nanoscale layers of the LbL multilayer structure indicated that the exceptional cyclic performance was primarily attributed to the spatial constraints imposed by the rigid porous substrate layered structure on the deformation of PEDOT:PSS. This work is expected to make a significant contribution to the development of electrodes with high charge storage capacity and ultra-long cycling life.
Collapse
Affiliation(s)
- Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Dongyan Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaofeng Wu
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Pengcheng Shi
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Peng L, Han J, Zhang H, Ren L, Li J, Chen J. Hyper-Cross-Linked Polyindole for Selective Adsorption and Resource Utilization of Organic Pollutants in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19493-19505. [PMID: 39227181 DOI: 10.1021/acs.langmuir.4c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Efficient treatment and utilization of organic pollutants in water are difficult for environmental remediation. A new hyper-cross-linked polymer (PIn-HCP) with high specific surface area was constructed via polyindole (PIn) as building blocks. Rich pore structures and abundant adsorption sites in PIn-HCP were obtained by hyper-cross-linking. The specific surface area of PIn-HCP was enhanced from 14.85 to 431.89 m2/g. The adsorption capacities of PIn-HCP-2 for methylene blue (MB), methyl orange (MO), rhodamine B (RhB), and tetracycline hydrochloride (TH) are 902.0, 275.2, 16.0, and 0.0 mg/g, respectively. PIn-HCP also realized selective adsorption of MB, which can better separate MB/RhB and MB/TH. MB is adsorbed onto PIn-HCP via a synergistic mechanism including π-π stacking, electrostatic interaction, cation-π interaction, hydrogen bonding interaction, and ion exchange. The huge conjugated structure of PIn promotes PIn-HCP to selectively adsorb MB. In addition, PIn-HCP also retains the electrochemical properties of PIn. MB can improve the specific capacitance of PIn-HCP up to five times, and it has potential as a supercapacitor electrode. PIn-HCP offers a promising and practical solution for the efficient treatment and utilization of organic pollutants in water.
Collapse
Affiliation(s)
- Longfei Peng
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jian Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Huixin Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Liang Ren
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jihui Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jianxin Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
3
|
K D, Singh AK. Fabrication and characterization of Sb 2O 3-MoS 2nanocomposites for high performance supercapacitor applications. NANOTECHNOLOGY 2024; 35:435402. [PMID: 39084237 DOI: 10.1088/1361-6528/ad6995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Binary nanocomposite-based electrodes have been studied extensively in recent times owing to their multiple oxidation states, excellent physico-chemical features, and combined morphology, which are suitable for increasing the electrochemical performance of supercapacitors. The present work deals with Sb2O3-MoS2nanocomposites electrode for supercapacitor applications. The x-ray diffraction (XRD), Raman, scanning electron microscope (SEM), energy dispersive x-ray (EDX), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and x-ray photoelectron spectroscopy (XPS) characterizations have been studied to analyze the phase formation, vibrational modes, morphology, elemental composition and binding energies of the prepared Sb2O3-MoS2nanocomposites electrode material, as well as their electrochemical measurements such as cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) have been analyzed. The developed Sb2O3-MoS2nanocomposites electrode provides a high specific capacitance of 454.3 F g-1at the current density of 1 A g-1. Further, the hybrid supercapacitor device has been constructed which shows 104.04 F g-1of specific capacitance at 2 A g-1and manifests a good energy density of 24.42 Wh kg-1at a power density of 1299.89 W kg-1. Additionally, the hybrid device Sb2O3-MoS2//AC exhibits a good capacitive retention of 90.6% and a coulombic efficiency of 100.45% at 10 A g-1over 8000 cycles.
Collapse
Affiliation(s)
- Dhamodharan K
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Abhishek Kumar Singh
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
4
|
Perdana MY, Johan BA, Abdallah M, Hossain ME, Aziz MA, Baroud TN, Drmosh QA. Understanding the Behavior of Supercapacitor Materials via Electrochemical Impedance Spectroscopy: A Review. CHEM REC 2024; 24:e202400007. [PMID: 38621230 DOI: 10.1002/tcr.202400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Energy harvesting and energy storage are two critical aspects of supporting the energy transition and sustainability. Many studies have been conducted to achieve excellent performance devices for these two purposes. As energy-storing devices, supercapacitors (SCs) have tremendous potential to be applied in several sectors. Some electrochemical characterizations define the performance of SCs. Electrochemical impedance spectroscopy (EIS) is one of the most powerful analyses to determine the performance of SCs. Some parameters obtained from this analysis include bulk resistance, charge-transfer resistance, total resistance, specific capacitance, response frequency, and response time. This work provides a holistic and comprehensive review of utilizing EIS for SC characterization. Overall, researchers can benefit from this review by gaining a comprehensive understanding of the utilization of electrochemical impedance spectroscopy (EIS) for characterizing supercapacitors (SCs), enabling them to enhance SC performance and contribute to the advancement of energy harvesting and storage technologies.
Collapse
Affiliation(s)
- Muhamad Yudatama Perdana
- Physics Department, King Fahd University of Petroleum and Minerals P.O. Box 5040, Dhahran, 31261, Saudi Arabia
| | - Bashir Ahmed Johan
- Materials Science and Engineering Department, King Fahd University of Petroleum and Minerals P.O. Box 5040, Dhahran, 31261, Saudi Arabia
| | - Muaz Abdallah
- Materials Science and Engineering Department, King Fahd University of Petroleum and Minerals P.O. Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Emdad Hossain
- Materials Science and Engineering Department, King Fahd University of Petroleum and Minerals P.O. Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen technology and carbon management (IRC-HTCM), King Fahd University of Petroleum and Minerals, P.O. Box 5040, Dhahran, 31261, Saudi Arabia
| | - Turki Nabieh Baroud
- Materials Science and Engineering Department, King Fahd University of Petroleum and Minerals P.O. Box 5040, Dhahran, 31261, Saudi Arabia
| | - Qasem Ahmed Drmosh
- Materials Science and Engineering Department, King Fahd University of Petroleum and Minerals P.O. Box 5040, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen technology and carbon management (IRC-HTCM), King Fahd University of Petroleum and Minerals, P.O. Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
5
|
Lv T, Wang X, Zhang Y, Yang X. Nitrogen-Doped Cellulose-Derived Porous Carbon Fibers for High Mass-Loading Aqueous Supercapacitors. CHEMSUSCHEM 2024:e202301500. [PMID: 38179849 DOI: 10.1002/cssc.202301500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Biomass-based porous carbon with renewability and flexible structure tunability is a promising electrode material for supercapacitors. However, there is a huge gap between experimental research and practical applications. How to maintain good electrochemical performance of high mass-loading electrodes and suppress the self-discharge of supercapacitors is a key issue that urgently needs to be addressed. The structure regulation of electrode materials such as heteroatom doping is a promising optimization strategy for high mass-loading electrodes. In this work, nitrogen-doped cellulose-derived porous carbon fibers (N-CHPCs) were prepared by a facile bio-template method using cotton cellulose as raw material and urea as dopant. The prepared N-CHPCs have high specific surface area, excellent hierarchical porous structure, partial graphitization properties and suitable heteroatom content. The assembled high mass-loading (12.8 mg cm-2 ; 245 μm) aqueous supercapacitor has excellent electrochemical performance, i. e., low open-circuit voltage attenuation rate (21.39 mV h-1 ), high voltage retention rate (78.81 %), high specific capacitance (295.8 F g-1 at 0.1 A g-1 ), excellent area capacitance (3.79 F cm-2 at 0.1 A g-1 ), excellent cycling stability (97.28 % over 20,000 cycles at 1.0 A g-1 ). The excellent performance of high mass-loading N-CHPCs is of great significance for their practical applications in advanced aqueous supercapacitors.
Collapse
Affiliation(s)
- Ting Lv
- College of Chemistry, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Xiaofeng Wang
- College of Chemistry, Electron Microscopy Center, Jilin University, Changchun, 130012, China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ying Zhang
- College of Chemistry, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Xiaomin Yang
- College of Chemistry, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| |
Collapse
|
6
|
Abbas KA, Abdelwahab A, Abdel-Samad HS, Abd-El Rehim SS, Hassan HH. Novel preparation of metal-free carbon xerogels under acidic conditions and their performance as high-energy density supercapacitor electrodes. NANOSCALE ADVANCES 2023; 5:5499-5512. [PMID: 37822908 PMCID: PMC10563850 DOI: 10.1039/d3na00517h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023]
Abstract
The development of metal-free supercapacitor electrodes with a high energy density is a crucial requirement in the global shift towards sustainable energy sources and industrial pursuit of an optimal supercapacitor. Indeed, from an industrial perspective, time assumes a paramount role in the manufacturing process. A majority of synthesis methods employed for the fabrication of carbon xerogel-based supercapacitor electrodes are characterized by prolonged durations, and result in relatively poor energy and power density. These limitations hinder their practical applications and impede their widespread manufacturing capabilities. In this study, carbon xerogel-based supercapacitor electrodes were made in the shortest time ever reported by making the condition highly acidic with hydrochloric acid (HCl). Furthermore, the investigation of the effect of HCl concentrations (0.1 M, 0.05 M, and 0.01 M) on the morphology and electrochemical behavior of the prepared samples is reported herein. Interestingly, the highest concentration of HCl developed the highest BET surface area, 1032 m2 g-1, which enforced the capacitive behavior to deliver a specific capacitance of 402 F g-1 at 1 A g-1 and a capacitance retention of 80.8% at a current density of 2 A g-1 in an electrolyte containing 0.5 M H2SO4 + 0.5 M Na2SO4. Moreover, an impressive energy density of 45 W h kg-1 at a power density of 18.2 kW kg-1 was achieved. Interestingly, as the HCl concentration increased, the equivalent series resistance decreased to 3.9 W with carbon xerogel 0.1 M HCl (CX0.1). The superior performance of CX0.1 may be attributed to its enlarged BET surface area, pore volume, pore diameter, and smaller particle size. This work provides a facile approach for the large-scale production of metal-free carbon supercapacitor electrodes with improved performance and stability and opens novel horizons to explore the impacts of many types of catalysts during the carbon xerogel preparation.
Collapse
Affiliation(s)
- Karim Ahmed Abbas
- Chemistry Department, Faculty of Science, Ain-Shams University Abassia Cairo 11566 Egypt
- Faculty of Science, Galala University Sokhna Suez 43511 Egypt
| | - Abdalla Abdelwahab
- Faculty of Science, Galala University Sokhna Suez 43511 Egypt
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University 62511 Beni-Suef Egypt
| | - Hesham S Abdel-Samad
- Chemistry Department, Faculty of Science, Ain-Shams University Abassia Cairo 11566 Egypt
| | | | - Hamdy H Hassan
- Chemistry Department, Faculty of Science, Ain-Shams University Abassia Cairo 11566 Egypt
- Faculty of Science, Galala University Sokhna Suez 43511 Egypt
| |
Collapse
|
7
|
Salah N, Shehab M, Nady JE, Ebrahim S, El-Maghraby E, Sakr AH. Polyaniline/ZnS Quantum Dots Nanocomposite as Supercapacitor Electrode. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
8
|
Nayak D, Choudhary RB. Influence of ZnS on the structural, morphological, optical and thermal properties of Polyindole for an emissive layer. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Supercapacitor based on polymeric binary composite of polythiophene and single-walled carbon nanotubes. Sci Rep 2022; 12:11278. [PMID: 35789198 PMCID: PMC9253121 DOI: 10.1038/s41598-022-15477-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this work is to fabricate supercapacitor electrode based on poly (3-hexyl-thiophene-2, 5-diyl) (P3HT) and single-walled carbon nanotubes (SWCNTs) nanocomposites with different ratios onto a graphite sheet as a substrate with a wide voltage window in nonaqueous electrolyte. Structural, morphological and electrochemical properties of the prepared nanocomposites of P3HT/SWCNTs were studied and discussed. The electrochemical properties included cyclic voltammetry (CV), galvanostatic charging-discharging (GCD), and electrochemical impedance spectroscopy (EIS) were investigated. The obtained results indicated that P3HT/SWCNTs nanocomposite possesses higher specific capacitance than that present in its individual component. The high electrochemical performance of the nanocomposite was due to formation of microporous structure which facilitates ions diffusion and electrolyte penetration in these pores. The morphological micrographs of the purified SWCNTs had buckypaper structure while the photomicrographs of P3HT/SWCNTs showed that SWCNTs appear behind and front of the P3HT nanospheres. The specific capacitance of 50% SWCNTs at 0.5 Ag−1 was found to be 245.8 Fg−1 compared with that of pure P3HT of 160.5 Fg−1.
Collapse
|