1
|
Wang L, Wang J, Xiao Z, Wu R, Fan C, Zhang D, Fan Y. Rational Construction of Co 4(μ-O) 6(COO) 6 SBU-Based MOFs through Mixed-Ligand Strategy to Enhance Electrocatalytic Oxygen Evolution Performance. Inorg Chem 2024; 63:18182-18192. [PMID: 39297886 DOI: 10.1021/acs.inorgchem.4c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Metal-organic frameworks (MOFs) are increasingly becoming an important choice for developing robust and efficient electrocatalysts; therefore, exploring the relationship between the structure, catalytic activity, and stability of MOFs is of great significance. MOFs 1-3 with different spatial configurations are designed and synthesized based on linear pyridine ligands, tetragonal carboxylic acid ligands, and triangular carboxylic acid ligands, while MOF 4 displays a three-dimensional (3D) supramolecule assembled through a mixed-ligand strategy. Compared with MOFs 1-3, MOF 4 has the lowest overpotential of 106 mV (at 10 mA·cm-2) and a Tafel slope of 80.9 mV·dec-1, as well as sturdy long-term stability in the process of oxygen evolution reaction (OER). The presence of dense metal clusters and μ3-O promotes the optimal catalytic performance of MOF 4. Density functional theory (DFT) calculations of MOF 4 demonstrate that the process from O* to OOH* is the rate-determining step. This investigation further reveals the relationship between MOF structural composition and electrocatalytic OER performance and provides an effective strategy for the assembly of MOF-based electrocatalysts.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Jinmiao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Zhengting Xiao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Ruixue Wu
- College of Food Engineering, Qingdao Institute of Technology, Qingdao, Shandong 266300, P. R. China
| | - Chuanbin Fan
- Key Laboratory of Research on Environmental Pollution and Health Risk Assessment, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P. R. China
| | - Dongmei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| | - Yuhua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P. R. China
| |
Collapse
|
2
|
Shang K, Guo J, Ma Y, Liu H, Zhang X, Wang H, Wang J, Yan Z. Hierarchical Sea Urchin-like Fe-doped Heazlewoodite for High-Efficient Oxygen Evolution. Chemphyschem 2024; 25:e202300414. [PMID: 38361446 DOI: 10.1002/cphc.202300414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/25/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Electrochemical water-splitting to produce hydrogen is potential to substitute the traditional industrial coal gasification, but the oxygen evolution kinetics at the anode remains sluggish. In this paper, sea urchin-like Fe doped Ni3S2 catalyst growing on nickel foam (NF) substrate is constructed via a simple two-step strategy, including surface iron activation and post sulfuration process. The NF-Fe-Ni3S2 obtains at temperature of 130 °C (NF-Fe-Ni3S2-130) features nanoneedle-like arrays which are vertically grown on the particles to form sea urchin-like morphology, features high electrochemical surface area. As oxygen evolution catalyst, NF-Fe-Ni3S2-130 exhibits excellent oxygen evolution activities, fast reaction kinetics, and superior reaction stability. The excellent OER performance of sea urchin-like NF-Fe-Ni3S2-130 is mainly ascribed to the high-vertically dispersive of nanoneedles and the existing Fe dopants, which obviously improved the reaction kinetics and the intrinsic catalytic properties. The simple preparation strategy is conducive to establish high-electrochemical-interface catalysts, which shows great potential in renewable energy conversion.
Collapse
Affiliation(s)
- Kun Shang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Medicine, Yan'an University, Yan'an, 716000, Shaanxi, P. R. China
| | - Junpo Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Yingjun Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Hangning Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Xiaoling Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Huizhen Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Jie Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Amin RS, Fetohi AE, Khater DZ, Lin J, Wang Y, Wang C, El-Khatib KM. Selenium-transition metal supported on a mixture of reduced graphene oxide and silica template for water splitting. RSC Adv 2023; 13:15856-15871. [PMID: 37250226 PMCID: PMC10209667 DOI: 10.1039/d3ra01945d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Exploration of economical, highly efficient, and environment friendly non-noble-metal-based electrocatalysts is necessary for hydrogen and oxygen evolution reactions (HER and OER) but challenging for cost-effective water splitting. Herein, metal selenium nanoparticles (M = Ni, Co & Fe) are anchored on the surface of reduced graphene oxide and a silica template (rGO-ST) through a simple one-pot solvothermal method. The resulting electrocatalyst composite can enhance mass/charge transfer and promote interaction between water molecules and electrocatalyst reactive sites. NiSe2/rGO-ST shows a remarkable overpotential (52.5 mV) at 10 mA cm-2 for the HER compared to the benchmark Pt/C E-TEK (29 mV), while the overpotential values of CoSeO3/rGO-ST and FeSe2/rGO-ST are 246 and 347 mV, respectively. The FeSe2/rGO-ST/NF shows a low overpotential (297 mV) at 50 mA cm-2 for the OER compared to RuO2/NF (325 mV), while the overpotentials of CoSeO3-rGO-ST/NF and NiSe2-rGO-ST/NF are 400 and 475 mV, respectively. Furthermore, all catalysts indicate negligible deterioration, indicating better stability during the process of HER and OER after a stability test of 60 h. The water splitting system composed of NiSe2-rGO-ST/NF||FeSe2-rGO-ST/NF electrodes requires only ∼1.75 V at 10 mA cm-2. Its performance is nearly close to that of a noble metal-based Pt/C/NF||RuO2/NF water splitting system.
Collapse
Affiliation(s)
- R S Amin
- Chemical Engineering Department, Engineering Research and Renewable Energy Institute, National Research Centre 33 El-Buhouth St., Dokki Cairo 12622 Egypt
| | - Amani E Fetohi
- Chemical Engineering Department, Engineering Research and Renewable Energy Institute, National Research Centre 33 El-Buhouth St., Dokki Cairo 12622 Egypt
| | - D Z Khater
- Chemical Engineering Department, Engineering Research and Renewable Energy Institute, National Research Centre 33 El-Buhouth St., Dokki Cairo 12622 Egypt
| | - Jin Lin
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - Yanzhong Wang
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - Chao Wang
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - K M El-Khatib
- Chemical Engineering Department, Engineering Research and Renewable Energy Institute, National Research Centre 33 El-Buhouth St., Dokki Cairo 12622 Egypt
| |
Collapse
|
5
|
Wang Z, Zhou T, Chen Z, Gu R, Tao J, Fan Z, Guo L, Liu Y. Three-Dimensional Strawlike MoSe 2-Ni(Fe)Se Electrocatalysts for Overall Water Splitting. Inorg Chem 2023; 62:2894-2904. [PMID: 36729485 DOI: 10.1021/acs.inorgchem.2c04354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of efficient and low-cost transition-metal electrocatalysts is of great significance for hydrogen production from water splitting. Herein, we synthesized three-dimensional strawlike MoSe2-NiSe composed of microrods on nickel foam (NF) by a one-step hydrothermal reaction. The as-prepared MoSe2-NiSe/NF exhibited effective hydrogen evolution reaction (HER) activity (low overpotential of 79 mV at 10 mA cm-2 and stability of 21 h in 1 M KOH), benefiting from the large electrochemically active area provided by strawlike structures, proper Se content, and synergistic effect of active phases. The enhanced oxygen evolution reaction (OER) activity (the low overpotential of 217 mV at 10 mA cm-2 and maintaining stability for 47 h in 1 M KOH) was further observed for Fe-doped MoSe2-NiSe/NF (MoSe2-NiFeSe/NF) prepared by facile soaking, which can be mainly ascribed to optimized active phases formed on the OER process after Fe doping. The two-electrode system (MoSe2-NiSe/NF||MoSe2-NiFeSe/NF) requires a low cell voltage of 1.54 V to obtain a current density of 10 mA cm-2 in 1 M KOH, which provides an interesting idea for constructing an effective overall water splitting system.
Collapse
Affiliation(s)
- Zihao Wang
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Tao Zhou
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Zheng Chen
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Ruizhe Gu
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Junwen Tao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Zhewei Fan
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Lingyun Guo
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| | - Yongsheng Liu
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China
| |
Collapse
|
6
|
Recent Trends in Electrochemical Catalyst Design for Hydrogen Evolution, Oxygen Evolution, and Overall Water Splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Srinivas K, Ma F, Liu Y, Zhang Z, Wu Y, Chen Y. Metal-Organic Framework-Derived Fe-Doped Ni 3Se 4/NiSe 2 Heterostructure-Embedded Mesoporous Tubes for Boosting Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52927-52939. [PMID: 36382691 DOI: 10.1021/acsami.2c16133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It is crucial but challenging to promote sluggish kinetics of oxygen evolution reaction (OER) for water splitting via finely tuning the hierarchical nanoarchitecture and electronic structure of the catalyst. To address such issues, herein we present iron-doped Ni3Se4/NiSe2 heterostructure-embedded metal-organic framework-derived mesoporous tubes (Ni-MOF-Fe-Se-400) realized by an interfacial engineering strategy. Due to the hierarchical nanoarchitecture of conductive two-dimensional nanosheet-constructed MOF-derived mesoporous tubes, coupled with fine tuning of the electronic structure via Fe-doping and interactions between Ni3Se4/NiSe2 heterostructures, the Ni-MOF-Fe-Se-400 catalyst delivers superior OER activity: it requires only a low overpotential of 242 mV to achieve 10 mA cm-2 (Ej=10), surpassing the benchmark RuO2 (Ej=10 = 286 mV) and displays exceptional durability in the chronoamperometric i-t test with a small current decay (6.2%) after 72 h. Furthermore, the water splitting system comprises a Ni-MOF-Fe-Se-400 anode and a Pt/C cathode requires a low cell voltage of 1.576 V to achieve Ej=10 with an excellent Faradic efficiency (∼100%), outperforming the RuO2-Pt/C combination. This work presents a novel interfacial engineering strategy to finely adjust the morphology and electronic structure of the non-noble metal-based OER catalyst via a facile fabrication method.
Collapse
Affiliation(s)
- Katam Srinivas
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Fei Ma
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Yanfang Liu
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Ziheng Zhang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Yu Wu
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Yuanfu Chen
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, PR China
| |
Collapse
|