1
|
Li Q, Nan K, Wang W, Zheng H, He K, Wang Y. Electrostatically fabricated heterostructure of interfacial-polarization-enhanced Fe 3O 4/C/MXene for ultra-wideband electromagnetic wave absorption. J Colloid Interface Sci 2024; 662:796-806. [PMID: 38382364 DOI: 10.1016/j.jcis.2024.02.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Electromagnetic (EM) pollution can disrupt the functioning of advanced electronic devices, hence it's necessary to design EM wave absorbers with high-level absorption capabilities. The Ti3C2Tx (MXene) is classified as a potential EM absorbing material; nevertheless, the lack of magnetic loss mechanism leads to its inadequate EM absorbing performance. On this basis, a novel composite design with promising EM absorption properties is hypothesized to be the integration of few-layer MXene and heterogeneous magnetic MOF derivatives (Fe3O4/C) with complementary advantages. Herein, we synthesized two-dimensional (2D) interfacial-polarization-enhanced MXene hybrid (Fe3O4/C/MXene) by electrostatic assembly. It is notable that the interfacial polarization is realized by adding a small amount of magnetic Fe3O4/C. Furthermore, the Fe3O4/C/ MXene demonstrates an astonishing effective absorption bandwidth (EAB) of 10.7 GHz and an excellent EM wave absorption performance (RLmin) of -66.9 dB. Moreover, the radar cross section (RCS) of Fe3O4/C/MXene is lower than -15.1 dB m2 from -90° to 90° with a minimum RCS value of -52.6 dB m2 at 32°. In addition, the significant attenuation of the EM wave is due to the synergistic effect of improved impedance matching, dielectric loss, and magnetic loss. Thus, the magnetized Fe3O4/C/MXene hybrid is expected to emerge as a strong contender for high-performance EM wave absorbers.
Collapse
Affiliation(s)
- Qingwei Li
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Kai Nan
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Wei Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Hao Zheng
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Kaikai He
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yan Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| |
Collapse
|
2
|
Li K, Zhang X, Huang X, Li X, Chang Q, Wang J, Deng S, Zhu G. Wood-converted porous carbon decorated with MIL-101(Fe) derivatives for promoting photo-Fenton degradation of ciprofloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23924-23941. [PMID: 38430437 DOI: 10.1007/s11356-024-32679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
In response to the escalating concerns over antibiotics in aquatic environments, the photo-Fenton reaction has been spotlighted as a promising approach to address this issue. Herein, a novel heterogeneous photo-Fenton catalyst (Fe3O4/WPC) with magnetic recyclability was synthesized through a facile two-step process that included in situ growth and subsequent carbonization treatment. This catalyst was utilized to expedite the photocatalytic decomposition of ciprofloxacin (CIP) assisted by H2O2. Characterization results indicated the successful anchoring of MIL-101(Fe)-derived spindle-like Fe3O4 particles in the multi-channeled wood-converted porous carbon (WPC) scaffold. The as-synthesized hybrid photocatalysts, boasting a substantial specific surface area of 414.90 m2·g-1 and an excellent photocurrent density of 0.79 μA·cm-2, demonstrated superior photo-Fenton activity, accomplishing approximately 100% degradation of CIP within 120 min of ultraviolet-light exposure. This can be attributed to the existence of a heterojunction between Fe3O4 and WPC substrate that promotes the migration and enhances the efficient separation of photogenerated electron-hole pairs. Meanwhile, the Fe(III)/Fe(II) redox circulation and mesoporous wood carbon in the catalyst synergistically enhance the utilization of H2O and accelerate the formation of •OH radicals, leading to heightened degradation efficiency of CIP. Experiments utilizing chemical trapping techniques have demonstrated that •OH radicals are instrumental in the CIP degradation process. Furthermore, the study on reusability indicated that the efficiency in removing CIP remained at 89.5% even through five successive cycles, indicating the structural stability and excellent recyclability of Fe3O4/WPC. This research presented a novel pathway for designing magnetically reusable MOFs/wood-derived composites as photo-Fenton catalysts for actual wastewater treatment.
Collapse
Affiliation(s)
- Kaiqian Li
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Xupeng Zhang
- School of Material and Chemistry Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Xueqin Huang
- School of Material and Chemistry Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Xianghong Li
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China
| | - Qiaowen Chang
- Kunming Institute of Precious Metals, Yunnan Precious Metals Lab Co., Ltd., Kunming, 650106, China
| | - Jing Wang
- School of Material and Chemistry Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Shuduan Deng
- School of Material and Chemistry Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Gang Zhu
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, China.
- School of Material and Chemistry Engineering, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
3
|
Balasubramanian S, Kanagarathinam S, Cingaram R, Bakthavachalam V, Kulathu Iyer S, Rajendran S, Natesan Sundaramurthy K, Ranganathan S. Waste toner-derived porous iron oxide pigments with enhanced catalytic degradation property. ENVIRONMENTAL RESEARCH 2023; 216:114695. [PMID: 36351473 DOI: 10.1016/j.envres.2022.114695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
'Wealth from Waste' is an emerging concept, since it leads an effective waste treatment and waste recyclability. On the other hand, cost effective production iron oxide (IO) nanomaterials is still needed to develop, owing to their wide applications. Herein, we proposed a simple direct calcination method to prepare porous IO (Fe3O4 and Fe2O3) nanomaterials from waste toner powder. Characterization techniques reveal that a structural change happened from Fe3O4 to γ-Fe2O3 and γ-Fe2O3 to α-Fe2O3 at the calcination temperature of 500 °C and 700 °C respectively. Consequently, optical (band gap) and magnetic parameters of IO samples were significantly varied. The pigment characteristics of the IO samples were evaluated using Commission Internationale de l'Eclairage (CIE) analysis. IO900 sample has shown good brown-red coloration (L* = 43.11, a* = 13.26 and b* = 5.69) and it also exhibited good stability in acidic and basic conditions. Practical applicability of IO pigments were also tested by mixing with plaster of paris (PP) powder. Further, porous IO samples were also used as catalysts in the reductive degradation of methyl orange (MO) dye in presence of excess sodium borohydride (NaBH4). IO, prepared at 900 °C exhibited ∼99.9% reduction efficiency within 40 min. Recycling experiments indicated that IO900 possess good stability up to seven cycles. The present porous IO samples will become potential in pigment and environmental remediation.
Collapse
Affiliation(s)
| | | | - Ravichandran Cingaram
- Department of Chemistry, Easwari Engineering College, Chennai 600089, Tamil Nadu, India
| | - Venkatachalapathy Bakthavachalam
- Department of Chemistry, Easwari Engineering College, Chennai 600089, Tamil Nadu, India; Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Sathiyanarayanan Kulathu Iyer
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT University), Vellore, 632014, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 600095, India; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohaliz, Punjab, 140413, India
| | | | - Suresh Ranganathan
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| |
Collapse
|
4
|
Zheng Y, Xu Y, Guo J, Li J, Shen J, Guo Y, Bao X, Huang Y, Zhang Q, Xu J, Wu J, Ian H, Shao H. Cobalt sulfide nanoparticles restricted in 3D hollow cobalt tungstate nitrogen-doped carbon frameworks incubating stable interfaces for Li-ion storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|