1
|
Lee HC, Park JH, In SI, Yang J. Recent advances in photoelectrochemical hydrogen production using I-III-VI quantum dots. NANOSCALE 2024. [PMID: 38683106 DOI: 10.1039/d4nr01040j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Photoelectrochemical (PEC) water splitting, recognized for its potential in producing solar hydrogen through clean and sustainable methods, has gained considerable interest, particularly with the utilization of semiconductor nanocrystal quantum dots (QDs). This minireview focuses on recent advances in PEC hydrogen production using I-III-VI semiconductor QDs. The outstanding optical and electrical properties of I-III-VI QDs, which can be readily tuned by modifying their size, composition, and shape, along with an inherent non-toxic nature, make them highly promising for PEC applications. The performance of PEC devices using these QDs can be enhanced by various strategies, including ligand modification, defect engineering, doping, alloying, and core/shell heterostructure engineering. These approaches have notably improved the photocurrent densities for hydrogen production, achieving levels comparable to those of conventional heavy-metal-based counterparts. Finally, this review concludes by addressing the present challenges and future prospects of these QDs, underlining crucial steps for their practical applications in solar hydrogen production.
Collapse
Affiliation(s)
- Hyo Cheol Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Ji Hye Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Su-Il In
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
2
|
Almeida CMR, Merillas B, Pontinha ADR. Trends on Aerogel-Based Biosensors for Medical Applications: An Overview. Int J Mol Sci 2024; 25:1309. [PMID: 38279307 PMCID: PMC10816975 DOI: 10.3390/ijms25021309] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/01/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Aerogels are unique solid-state materials composed of interconnected 3D solid networks and a large number of air-filled pores. This structure leads to extended structural characteristics as well as physicochemical properties of the nanoscale building blocks to macroscale, and integrated typical features of aerogels, such as high porosity, large surface area, and low density, with specific properties of the various constituents. Due to their combination of excellent properties, aerogels attract much interest in various applications, ranging from medicine to construction. In recent decades, their potential was exploited in many aerogels' materials, either organic, inorganic or hybrid. Considerable research efforts in recent years have been devoted to the development of aerogel-based biosensors and encouraging accomplishments have been achieved. In this work, recent (2018-2023) and ground-breaking advances in the preparation, classification, and physicochemical properties of aerogels and their sensing applications are presented. Different types of biosensors in which aerogels play a fundamental role are being explored and are collected in this manuscript. Moreover, the current challenges and some perspectives for the development of high-performance aerogel-based biosensors are summarized.
Collapse
Affiliation(s)
- Cláudio M. R. Almeida
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal; (C.M.R.A.); (B.M.)
- LAQV-REQUIMTE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Beatriz Merillas
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal; (C.M.R.A.); (B.M.)
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Ana Dora Rodrigues Pontinha
- University of Coimbra, ISISE, ARISE, Department of Civil Engineering, 3030-788 Coimbra, Portugal
- SeaPower, Associação Para o Desenvolvimento da Economia do Mar, Rua Das Acácias, N° 40A, Parque Industrial Da Figueira Da Foz, 3090-380 Figueira Da Foz, Portugal
| |
Collapse
|
3
|
Payanda Konuk O, Alsuhile AAAM, Yousefzadeh H, Ulker Z, Bozbag SE, García-González CA, Smirnova I, Erkey C. The effect of synthesis conditions and process parameters on aerogel properties. Front Chem 2023; 11:1294520. [PMID: 37937209 PMCID: PMC10627014 DOI: 10.3389/fchem.2023.1294520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
Aerogels are remarkable nanoporous materials with unique properties such as low density, high porosity, high specific surface area, and interconnected pore networks. In addition, their ability to be synthesized from various precursors such as inorganics, organics, or hybrid, and the tunability of their properties make them very attractive for many applications such as adsorption, thermal insulation, catalysts, tissue engineering, and drug delivery. The physical and chemical properties and pore structure of aerogels are crucial in determining their application areas. Moreover, it is possible to tailor the aerogel properties to meet the specific requirements of each application. This review presents a comprehensive review of synthesis conditions and process parameters in tailoring aerogel properties. The effective parameters from the dissolution of the precursor step to the supercritical drying step, including the carbonization process for carbon aerogels, are investigated from the studies reported in the literature.
Collapse
Affiliation(s)
- Ozge Payanda Konuk
- Department of Materials Science and Engineering, Koç University, Istanbul, Türkiye
| | - Ala A. A. M. Alsuhile
- Department of Chemical and Biological Engineering, Koç University, Istanbul, Türkiye
| | - Hamed Yousefzadeh
- Department of Chemical Engineering, Yeditepe University, Atasehir, Istanbul, Türkiye
| | - Zeynep Ulker
- School of Pharmacy, Altinbas University, Istanbul, Türkiye
| | - Selmi E. Bozbag
- Department of Chemical and Biological Engineering, Koç University, Istanbul, Türkiye
| | - C. A. García-González
- Departamento de Farmacología, Farmacia Y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - I. Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, Germany
| | - Can Erkey
- Department of Materials Science and Engineering, Koç University, Istanbul, Türkiye
- Department of Chemical and Biological Engineering, Koç University, Istanbul, Türkiye
- Koç University Tüpraş Energy Center (KUTEM), Koç University, Istanbul, Türkiye
| |
Collapse
|
4
|
Zhang C, Song S, Cao Q, Li J, Liu Q, Zhang S, Jian X, Weng Z. Improving the comprehensive properties of chitosan-based thermal insulation aerogels by introducing a biobased epoxy thermoset to form an anisotropic honeycomb-layered structure. Int J Biol Macromol 2023; 246:125616. [PMID: 37391003 DOI: 10.1016/j.ijbiomac.2023.125616] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Naturally-derived aerogels have attracted considerable attention owing to their good biocompatibility, biodegradability and sustainability, but their weak mechanical properties largely limit their applications in various fields. Herein, we proposed the use of a directional freeze-drying method to prepare an anisotropic honeycomb three-dimensional porous aerogel with water-soluble chitosan (CS) as a rigid skeleton and water-soluble biobased epoxy resin as cross-linked hard segments, which had low volume shrinkage and density of 13.9 % and 34.3 mg/cm3, respectively. The resultant aerogel had anisotropic mechanical properties, such as rigidity in the axial direction with a maximum axial modulus of 6.71 MPa, which was 51.6 times larger than that of the pure chitosan aerogel, demonstrating a good compressive elasticity in the radial direction. It also had anisotropic thermal management properties, with a lower thermal conductivity in the radial direction than in the axial direction, down to 0.029 W/mK. The introduction of biobased epoxy resin improved the overall thermal stability, flame retardancy, and increased the biomass content in the aerogel, reducing the carbon footprint of the material. This study paves the way for the construction of a special graded porous, structurally and functionally integrated thermal insulation aerogel, which is of great significance for the development of new thermal insulation materials.
Collapse
Affiliation(s)
- Cijian Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Liaoning Technology Innovation Center of High Performance Resin Materials, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Shicong Song
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Liaoning Technology Innovation Center of High Performance Resin Materials, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian 116024, PR China; Shanghai Space Propulsion Technology Research Institute, Huzhou 313000, PR China
| | - Qi Cao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Liaoning Technology Innovation Center of High Performance Resin Materials, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jiahui Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Liaoning Technology Innovation Center of High Performance Resin Materials, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Liaoning Technology Innovation Center of High Performance Resin Materials, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Liaoning Technology Innovation Center of High Performance Resin Materials, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Liaoning Technology Innovation Center of High Performance Resin Materials, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhihuan Weng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Liaoning Technology Innovation Center of High Performance Resin Materials, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|