1
|
Tang S, Hu S, Feng L, Kong L, Gui J, Zhang Y, Liu ZH, Zhang D, Liu AA, Liu X, Hu C, Lan Y, Liu X, Li Z, Liu P, Duan S, Du Z, Liu M, Xie Q, Liu J, Shao L, Fu W, Wang Y, Li W. Structure-activity relationship analysis of meta-substituted N-cyclopropylmethyl-nornepenthones with mixed KOR/MOR activities. Eur J Med Chem 2025; 289:117449. [PMID: 40068406 DOI: 10.1016/j.ejmech.2025.117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Substance Use Disorder (SUD) remains a significant global challenge, with current treatment options offering limited efficacy. Agonists targeting the kappa opioid receptor (KOR), especially those with additional mu opioid receptor (MOR) antagonistic activity, have shown promise in addressing SUD. In this study, a series of meta-substituted N-cyclopropylmethyl-nornepenthone derivatives were designed and synthesized, and their biological activities were assessed, leading to the identification of a KOR/MOR dual modulator, compound 10a. Unlike its para-positional isomer SLL-1062, where KOR activity is completely abolished, compound 10a displayed a single-digit nanomolar affinity for KOR, while its binding profiles for MOR and delta opioid receptor (DOR) were comparable to those of SLL-1062. Functional assays in vitro confirmed that compound 10a exhibited agonistic activity at KOR and antagonistic activity at MOR. The molecular basis for the introduction of a KOR component into compound 10a was further elucidated. Although compound 10a did not produce apparent antinociception in vivo, it effectively blocked morphine-induced antinociception and intestinal motility inhibition in rodent models. This study provides valuable insights into the development of MOR/KOR dual modulators and presents new lead compounds for potential treatments for SUD.
Collapse
MESH Headings
- Structure-Activity Relationship
- Animals
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Mice
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/agonists
- Molecular Structure
- Humans
- Male
- Dose-Response Relationship, Drug
- Rats
- Gastrointestinal Motility/drug effects
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Siyuan Tang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China; School of Physical Science and Technology, ShanghaiTech University, No. 393 Huaxiazhong Road, Shanghai, 201210, China
| | - Shuyang Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Lijing Feng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Linghui Kong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Jiangwen Gui
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ying Zhang
- School of Physical Science and Technology, ShanghaiTech University, No. 393 Huaxiazhong Road, Shanghai, 201210, China
| | - Zi-Han Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Denggao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - An-An Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Chuyuan Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; University of Chinese Academy of Sciences, No. 19 A Yuquan Road, 100049, Beijing, China
| | - Yingjie Lan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Xiaoning Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Zixiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Panwen Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Shaoliang Duan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Zeyi Du
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Min Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Jinggen Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China.
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China
| | - Yujun Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; University of Chinese Academy of Sciences, No. 19 A Yuquan Road, 100049, Beijing, China.
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Inger JA, Mihan ER, Kolli JU, Lindsley CW, Bender AM. DARK Classics in Chemical Neuroscience: Methaqualone. ACS Chem Neurosci 2023; 14:340-350. [PMID: 36651763 DOI: 10.1021/acschemneuro.2c00697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Commonly known as "Quaaludes," methaqualone (1) is a sedative-hypnotic medication, with effects resembling barbiturates and other downers, that exerts its effects through modulation of γ-aminobutyric acid type A receptors (GABAAR). Following the discovery of the sedative and euphoric effects of methaqualone (1), it was quickly adopted by pharmaceutical companies and promoted by clinicians around the world as a "safe" sleeping pill option, and for a period it was available over the counter. The popularity of methaqualone (1) soared worldwide, and many people began to use it recreationally for its sedative-hypnotic-like psychoactive effects. Not long after its introduction, many individuals began to misuse the drug leading to overdoses and drug dependence which brought to light methaqualone's (1) addictive nature. In this review, the background, synthesis, pharmacology, metabolism, and pharmacokinetics of methaqualone (1) will be covered along with its discovery, history, and the derivatives that are currently available around the world through manufacture in clandestine laboratories.
Collapse
Affiliation(s)
- Joseph A Inger
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Elias R Mihan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jhansi U Kolli
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Aaron M Bender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|