1
|
Feng Y, Zhang Y, Ding X, Fan Y, Ge J. Multi-scale risk assessment and mitigations comparison for COVID-19 in urban public transport: A combined field measurement and modeling approach. BUILDING AND ENVIRONMENT 2023; 242:110489. [PMID: 37333517 PMCID: PMC10236904 DOI: 10.1016/j.buildenv.2023.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an unparalleled disruption to daily life. Given that COVID-19 primarily spreads in densely populated indoor areas, urban public transport (UPT) systems pose significant risks. This study presents an analysis of the air change rate in buses, subways, and high speed trains based on measured CO2 concentrations and passenger behaviors. The resulting values were used as inputs for an infection risk assessment model, which was used to quantitatively evaluate the effects of various factors, including ventilation rates, respiratory activities, and viral variants, on the infection risk. The findings demonstrate that ventilation has a negligible impact on reducing average risks (less than 10.0%) for short-range scales, but can result in a reduction of average risks by 32.1%-57.4% for room scales. When all passengers wear masks, the average risk reduction ranges from 4.5-folds to 7.5-folds. Based on our analysis, the average total reproduction numbers (R) of subways are 1.4-folds higher than buses, and 2-folds higher than high speed trains. Additionally, it is important to note that the Omicron variant may result in a much higher R value, estimated to be approximately 4.9-folds higher than the Delta variant. To reduce disease transmission, it is important to keep the R value below 1. Thus, two indices have been proposed: time-scale based exposure thresholds and spatial-scale based upper limit warnings. Mask wearing provides the greatest protection against infection in the face of long exposure duration to the omicron epidemic.
Collapse
Affiliation(s)
- Yinshuai Feng
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
- Center for Balance Architecture, Zhejiang University, Hangzhou, China
- International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| | - Yan Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
- International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| | - Xiaotian Ding
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
- International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| | - Yifan Fan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
- Center for Balance Architecture, Zhejiang University, Hangzhou, China
- International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| | - Jian Ge
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
- International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| |
Collapse
|
2
|
Moghadam TT, Ochoa Morales CE, Lopez Zambrano MJ, Bruton K, O'Sullivan DTJ. Energy efficient ventilation and indoor air quality in the context of COVID-19 - A systematic review. RENEWABLE & SUSTAINABLE ENERGY REVIEWS 2023; 182:113356. [PMID: 37220488 PMCID: PMC10186986 DOI: 10.1016/j.rser.2023.113356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
New COVID-19 ventilation guidelines have resulted in higher energy consumption to maintain indoor air quality (IAQ), and energy efficiency has become a secondary concern. Despite the significance of the studies conducted on COVID-19 ventilation requirements, a comprehensive investigation of the associated energy challenges has not been discussed. This study aims to present a critical systematic review of the Coronavirus viral spreading risk mitigation through ventilation systems (VS) and its relation to energy use. COVID-19 heating, ventilation and air conditioning (HVAC)-related countermeasures proposed by industry professionals have been reviewed and their influence on operating VS and energy consumption have also been discussed. A critical review analysis was then conducted on publications from 2020 to 2022. Four research questions (RQs) have been selected for this review concerning i) maturity of the existing literature, ii) building types and occupancy profile, iii) ventilation types and effective control strategies and iv) challenges and related causes. The results reveal that employing HVAC auxiliary equipment is mostly effective and increased fresh air supply is the most significant challenge associated with increased energy consumption due to maintaining IAQ. Future studies should focus on novel approaches toward solving the apparently conflicting objectives of minimizing energy consumption and maximizing IAQ. Also, effective ventilation control strategies should be assessed in various buildings with different occupancy densities. The implications of this study can be useful for future development of this topic not only to enhance the energy efficiency of the VS but also to enable more resiliency and health in buildings.
Collapse
Affiliation(s)
- Talie T Moghadam
- Intelligent Efficiency Research Group (IERG), University College Cork, Cork, Ireland
| | | | | | - Ken Bruton
- Intelligent Efficiency Research Group (IERG), University College Cork, Cork, Ireland
| | | |
Collapse
|
3
|
Guo Y, Dou Z, Zhang N, Liu X, Su B, Li Y, Zhang Y. Student close contact behavior and COVID-19 transmission in China's classrooms. PNAS NEXUS 2023; 2:pgad142. [PMID: 37228510 PMCID: PMC10205473 DOI: 10.1093/pnasnexus/pgad142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
Classrooms are high-risk indoor environments, so analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in classrooms is important for determining optimal interventions. Due to the absence of human behavior data, it is challenging to accurately determine virus exposure in classrooms. A wearable device for close contact behavior detection was developed, and we recorded >250,000 data points of close contact behaviors of students from grades 1 to 12. Combined with a survey on students' behaviors, we analyzed virus transmission in classrooms. Close contact rates for students were 37 ± 11% during classes and 48 ± 13% during breaks. Students in lower grades had higher close contact rates and virus transmission potential. The long-range airborne transmission route is dominant, accounting for 90 ± 3.6% and 75 ± 7.7% with and without mask wearing, respectively. During breaks, the short-range airborne route became more important, contributing 48 ± 3.1% in grades 1 to 9 (without wearing masks). Ventilation alone cannot always meet the demands of COVID-19 control; 30 m3/h/person is suggested as the threshold outdoor air ventilation rate in a classroom. This study provides scientific support for COVID-19 prevention and control in classrooms, and our proposed human behavior detection and analysis methods offer a powerful tool to understand virus transmission characteristics and can be employed in various indoor environments.
Collapse
Affiliation(s)
- Yong Guo
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Zhiyang Dou
- Department of Computer Science, The University of Hong Kong, Beijing 999077, China
| | - Nan Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing 100124, China
| | - Xiyue Liu
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing 100124, China
| | - Boni Su
- Clean Energy Research Institute, China Electric Power Planning and Engineering Institute, Beijing 100120, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| |
Collapse
|
4
|
Li Y, Fan Y, Zhi C, Ye W, Zhang X. Multi-objective optimization of mechanical ventilation with the aid of purifiers in two scenarios: Regular operation and mitigating the spread of respiratory infectious diseases. BUILDING SIMULATION 2023; 16:795-811. [PMID: 37128474 PMCID: PMC10126557 DOI: 10.1007/s12273-023-0999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 05/03/2023]
Abstract
COVID-19 and its impact on society have raised concerns about scaling up mechanical ventilation (MV) systems and the energy consequences. This paper attempted to combine MV and portable air cleaners (PACs) to achieve acceptable indoor air quality (IAQ) and energy reduction in two scenarios: regular operation and mitigating the spread of respiratory infectious diseases (RIDs). We proposed a multi-objective optimization method that combined the NSGA-II and TOPSIS techniques to determine the total equivalent ventilation rate of the MV-PAC system in both scenarios. The concentrations of PM2.5 and CO2 were primary indicators for IAQ. The modified Wells-Riley equation was adopted to predict RID transmissions. An open office with an MV-PAC system was used to demonstrate the method's applicability. Meanwhile, a field study was conducted to validate the method and evaluate occupants' perceptions of the MV-PAC system. Results showed that optimal solutions of the combined system can be obtained based on various IAQ requirements, seasons, outdoor conditions, etc. For regular operation, PACs were generally prioritized to maintain IAQ while reducing energy consumption even when outdoor PM2.5 concentration was high. MV can remain constant or be reduced at low occupancies. In RID scenarios, it is possible to mitigate transmissions when the quanta were < 48 h-1. No significant difference was found in the subjective perception of the MV and PACs. Moreover, the effects of infiltration on the optimal solution can be substantial. Nonetheless, our results suggested that an MV-PAC system can replace the MV system for offices for daily use and RID mitigation. Electronic Supplementary Material ESM The Appendix is available in the online version of this article at 10.1007/s12273-023-0999-z.
Collapse
Affiliation(s)
- Yiqun Li
- School of Mechanical Engineering, Tongji University, Shanghai, 201804 China
| | - Yujie Fan
- Department of Building Science, Tsinghua University, Beijing, 100084 China
| | - Chengqiang Zhi
- School of Mechanical Engineering, Tongji University, Shanghai, 201804 China
| | - Wei Ye
- School of Mechanical Engineering, Tongji University, Shanghai, 201804 China
- Key Laboratory of Engineering Structure Performance Evolution and Control, Ministry of Education, Tongji University, Shanghai, 200092 China
| | - Xu Zhang
- School of Mechanical Engineering, Tongji University, Shanghai, 201804 China
| |
Collapse
|
5
|
Jiang Z, Deng Z, Wang X, Dong B. PANDEMIC: Occupancy driven predictive ventilation control to minimize energy consumption and infection risk. APPLIED ENERGY 2023; 334:120676. [PMID: 36714219 PMCID: PMC9867897 DOI: 10.1016/j.apenergy.2023.120676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 05/31/2023]
Abstract
During the SARS-CoV-2 (COVID-19) pandemic, governments around the world have formulated policies requiring ventilation systems to operate at a higher outdoor fresh air flow rate for a sufficient time, which has led to a sharp increase in building energy consumption. Therefore, it is necessary to identify an energy-efficient ventilation strategy to reduce the risk of infection. In this study, we developed an occupant-number-based model predictive control (OBMPC) algorithm for building ventilation systems. First, we collected the occupancy and Heating, ventilation, and air conditioning system (HVAC) data from March to July 2021. Then, four different models (Auto regression moving average-based multilayer perceptron (ARMA_MLP), Recurrent neural networks (RNN), Long short-term memory networks (LSTM), and Nonhomogeneous Markov with change points detection (NH_Markov)) were used to predict the number of room occupants from 15 min to 24 h ahead with an interval output. We found that each model could predict the number of occupants with 85 % accuracy using a one-person offset. The accuracy of 15 min of the ahead prediction could reach 95 % with a one-person offset, but none of them could track abrupt changes. The occupancy prediction results were used to calculate the ventilation demand using the Wells-Riley equation, and the upper bound can maintain an infection risk lower than 2 % for 93 % of the day. This OBMPC model could reduce the coil load by 52.44 % and shift the peak load by 3 h up to 5 kW compared with 24 × 7 h full outdoor air (OA) system when people wear masks in the space. The occupancy prediction uncertainty could cause a 9 % to 26 % difference in demand ventilation, a 0.3 °C to 2.4 °C difference in zone temperature, a 28.5 % to 44.5 % difference in outdoor airflow rate, and a 10.7 % to 28.2 % difference in coil load.
Collapse
Affiliation(s)
- Zixin Jiang
- Department of Mechanical & Aerospace Engineering, Syracuse University, Syracuse, NY 13244, United States
- Built Environment Science and Technology (BEST) Lab, Syracuse University, Syracuse, NY 13244, United States
| | - Zhipeng Deng
- Department of Mechanical & Aerospace Engineering, Syracuse University, Syracuse, NY 13244, United States
- Built Environment Science and Technology (BEST) Lab, Syracuse University, Syracuse, NY 13244, United States
| | - Xuezheng Wang
- Department of Mechanical & Aerospace Engineering, Syracuse University, Syracuse, NY 13244, United States
- Built Environment Science and Technology (BEST) Lab, Syracuse University, Syracuse, NY 13244, United States
| | - Bing Dong
- Department of Mechanical & Aerospace Engineering, Syracuse University, Syracuse, NY 13244, United States
- Built Environment Science and Technology (BEST) Lab, Syracuse University, Syracuse, NY 13244, United States
| |
Collapse
|
6
|
Costa G, Arroyo O, Rueda P, Briones A. A ventilation early warning system (VEWS) for diaphanous workspaces considering COVID-19 and future pandemics scenarios. Heliyon 2023; 9:e14640. [PMID: 36945350 PMCID: PMC10020131 DOI: 10.1016/j.heliyon.2023.e14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The COVID-19 pandemic has generated new needs due to the associated health risks and, more specifically, its rapid infection rate. Prevention measures to avoid contagions in indoor spaces, especially in office and public buildings (e.g., hospitals, public administration, educational centres, etc.), have led to the need for adequate ventilation to dilute the possible concentration of the virus. This article presents our contribution to this new challenge, namely the Ventilation Early Warning System (VEWS) which has aims to adapt the operation of the current Heating, Ventilating and Air Conditioning (HVAC) systems to the ventilation needs of diaphanous workspaces, based on a Smart Campus Digital Twin (SCDT) framework approach, while maintaining sustainability. Different technologies such as the Internet of Things (IoT), Building Information Modelling (BIM) and Artificial Intelligence (AI) algorithms are combined to collect and integrate monitoring data (historical records, real-time information, and location-related patterns) to carry out forecasting simulations in this digital twin. The generated outputs serve to assist facility managers in their building governance, considering the appropriate application of health measures to reduce the risk of coronavirus contagion in combination with sustainability criteria. The article also provides the results of the implementation of the VEWS in a university workspace as a case study. Its application has made it possible to detect and warn of inadequate ventilation situations for the daily flow of people in the different controlled zones.
Collapse
Affiliation(s)
- Gonçal Costa
- Human Environment Research (HER), La Salle, Ramon Llull University, Barcelona, Spain
| | | | | | - Alan Briones
- Research Group on Smart Society, La Salle, Ramon Llull University, Barcelona, Spain
| |
Collapse
|
7
|
Wiryasaputra R, Huang CY, Kristiani E, Liu PY, Yeh TK, Yang CT. Review of an intelligent indoor environment monitoring and management system for COVID-19 risk mitigation. Front Public Health 2023; 10:1022055. [PMID: 36703846 PMCID: PMC9871550 DOI: 10.3389/fpubh.2022.1022055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
The coronavirus disease (COVID-19) outbreak has turned the world upside down bringing about a massive impact on society due to enforced measures such as the curtailment of personal travel and limitations on economic activities. The global pandemic resulted in numerous people spending their time at home, working, and learning from home hence exposing them to air contaminants of outdoor and indoor origins. COVID-19 is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which spreads by airborne transmission. The viruses found indoors are linked to the building's ventilation system quality. The ventilation flow in an indoor environment controls the movement and advection of any aerosols, pollutants, and Carbon Dioxide (CO2) created by indoor sources/occupants; the quantity of CO2 can be measured by sensors. Indoor CO2 monitoring is a technique used to track a person's COVID-19 risk, but high or low CO2 levels do not necessarily mean that the COVID-19 virus is present in the air. CO2 monitors, in short, can help inform an individual whether they are breathing in clean air. In terms of COVID-19 risk mitigation strategies, intelligent indoor monitoring systems use various sensors that are available in the marketplace. This work presents a review of scientific articles that influence intelligent monitoring development and indoor environmental quality management system. The paper underlines that the non-dispersive infrared (NDIR) sensor and ESP8266 microcontroller support the development of low-cost indoor air monitoring at learning facilities.
Collapse
Affiliation(s)
- Rita Wiryasaputra
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
- Department of Informatics, Krida Wacana Christian University, Jakarta, Indonesia
| | - Chin-Yin Huang
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
| | - Endah Kristiani
- Department of Informatics, Krida Wacana Christian University, Jakarta, Indonesia
- Department of Computer Science, Tunghai University, Taichung, Taiwan
| | - Po-Yu Liu
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Genomic Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ting-Kuang Yeh
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Genomic Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chao-Tung Yang
- Department of Computer Science, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| |
Collapse
|
8
|
Shang S, Jia W, Zhang S, Su B, Cheng R, Li Y, Zhang N. Changes on local travel behaviors under travel reduction-related interventions during COVID-19 pandemic: a case study in Hong Kong. CITY AND BUILT ENVIRONMENT 2023; 1:5. [PMCID: PMC9985955 DOI: 10.1007/s44213-023-00006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The emerging Omicron variant poses a serious threat to human health. Public transports play a critical role in infection spread. Based on the data of nearly 4 billion smartcard uses, between January 1, 2019 and January 31, 2021 from the Mass Transit Railway Corporation of Hong Kong, we analyzed the subway travel behavior of different population groups (adults, children, students and senior citizens) due to the COVID-19 pandemic and human travel behavior under different interventions (e.g. work suspension, school closure). Due to the pandemic, the number of MTR passengers (the daily number of passengers in close proximity in subway carriages) decreased by 37.4% (40.8%) for adults, 80.3% (78.5%) for children, 71.6% (71.6%) for students, and 33.5% (36.1%) for senior citizens. Due to work from home (school suspension), the number of contacted adults (students/children) in the same carriage during the rush hours decreased by 39.6% (38.6%/43.2%). If all workers, students, and children were encouraged to commute avoiding rush hours, the possible repeated contacts during rush hour of adults, children and students decreased by 73.3%, 77.9% and 79.5%, respectively. Since adults accounted for 87.3% of the total number of subway passengers during the pandemic, work from home and staggered shift pattern of workers can reduce the infection risk effectively. Our objective is to find the changes of local travel behavior due to the pandemic. From the perspective of public transports, the results provide a scientific support for COVID-19 prevention and control in cities.
Collapse
Affiliation(s)
- Shujia Shang
- grid.28703.3e0000 0000 9040 3743Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Wei Jia
- grid.194645.b0000000121742757Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Shiyao Zhang
- grid.263817.90000 0004 1773 1790The Research Institute for Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Boni Su
- grid.467472.4China Electric Power Planning & Engineering Institute, Beijing, China
| | - Reynold Cheng
- grid.194645.b0000000121742757Department of Computer Science, The University of Hong Kong, Hong Kong, SAR China
| | - Yuguo Li
- grid.194645.b0000000121742757Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China ,grid.194645.b0000000121742757School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR China
| | - Nan Zhang
- grid.28703.3e0000 0000 9040 3743Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| |
Collapse
|
9
|
Zhang S, Niu D, Lin Z. Occupancy-aided ventilation for airborne infection risk control: Continuously or intermittently reduced occupancies? BUILDING SIMULATION 2022; 16:733-747. [PMID: 36373145 PMCID: PMC9638348 DOI: 10.1007/s12273-022-0951-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/24/2022] [Accepted: 10/09/2022] [Indexed: 05/25/2023]
Abstract
Ventilation is an important engineering measure to control the airborne infection risk of acute respiratory diseases, e.g., Corona Virus Disease 2019 (COVID-19). Occupancy-aided ventilation methods can effectively improve the airborne infection risk control performance with a sacrifice of decreasing working productivity because of the reduced occupancy. This study evaluates the effectiveness of two occupancy-aided ventilation methods, i.e., the continuously reduced occupancy method and the intermittently reduced occupancy method. The continuously reduced occupancy method is determined by the steady equation of the mass conservation law of the indoor contaminant, and the intermittently reduced occupancy method is determined by a genetic algorithm-based optimization. A two-scenarios-based evaluation framework is developed, i.e., one with targeted airborne infection risk control performance (indicated by the mean rebreathed fraction) and the other with targeted working productivity (indicated by the accumulated occupancy). The results show that the improvement in the airborne infection risk control performance linearly and quadratically increases with the reduction in the working productivity for the continuously reduced occupancy method and the intermittently reduced occupancy method respectively. At a given targeted airborne infection risk control performance, the intermittently reduced occupancy method outperforms the continuously reduced occupancy method by improving the working productivity by up to 92%. At a given targeted working productivity, the intermittently reduced occupancy method outperforms the continuously reduced occupancy method by improving the airborne infection risk control performance by up to 38%.
Collapse
Affiliation(s)
- Sheng Zhang
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Dun Niu
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhang Lin
- Division of Building Science and Technology, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Zhuang X, Xu Y, Zhang L, Li X, Lu J. Experiment and numerical investigation of inhalable particles and indoor environment with ventilation system. ENERGY AND BUILDINGS 2022; 271:112309. [PMID: 35855051 PMCID: PMC9284541 DOI: 10.1016/j.enbuild.2022.112309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/25/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
After the outbreak of COVID-19, the indoor environment has become particularly important in closed spaces, being a common concern in environmental science and public health, and of great significance for the building environment. To improve the indoor air quality and control the spread of viruses, the analysis of inhalable particles in indoor environments is critical. In this research, we study standards focused on inhalable particles and indoor environmental quality, as well as analyzing the movement and diffusion of indoor particles. Based on our analysis, we conduct an experimental study to determine the distribution of indoor inhalable particles of different sizes before and after diffusion under the conditions of underfloor air distribution. Furthermore, the mathematical modeling method is adopted to simulate the indoor flow field, particle trajectories, and pollutant dispersion process. The k-ε two-equation model is applied as the turbulence model in the numerical simulation, while the Lagrangian discrete phase model is adopted to trace the motion of particles and analyze the distribution characteristics of indoor particles. The results demonstrate that fine particles (i.e., those with size less than 0.5 μm) have a significant impact on the indoor particle concentration, while coarse particles (i.e., with size above 2.5 μm) have a greater influence on the total mass concentration of indoor particles. Small-sized particles can easily follow the airflow and diffuse to upper parts of the room. Overall, the effects of indoor particles on indoor air quality, including the potential threat of aerosol transmission of respiratory infectious diseases, are non-negligible. Application of the presented research can contribute to improving the health-related aspects of the building environment.
Collapse
Affiliation(s)
- Xinyu Zhuang
- College of Quality & Standardization, Qingdao University, Qingdao 266071, China
| | - Yisong Xu
- School of Business, Qingdao University, Qingdao 266071, China
| | - Li Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
- BMP Construction Consulting(Shanghai) Co., Ltd., Shanghai 200336, China
| | - Xin Li
- School of Tourism and Geography Science, Qingdao University, Qingdao 266071, China
- Advanced Institute of Culture & Tourism, Qingdao University, Qingdao 266071, China
| | - Jie Lu
- Qingdao Institute of Standardization, Qingdao 266101, China
| |
Collapse
|
11
|
Wang Q, Zhang G, Wu Q, Shi L. Ventilating aged-care center based on solar chimney: Design and theoretical analysis. ENERGY AND BUILDINGS 2022; 266:112145. [PMID: 35529072 PMCID: PMC9052812 DOI: 10.1016/j.enbuild.2022.112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Natural ventilation is considered the first suggestion for COVID-19 prevention in buildings by the World Health Organization (WHO). Solar chimney's viability in aged care centers or similar facilities was analyzed numerically and theoretically. A new solar chimney design was proposed to reduce the cross-infection risk of COVID-19 based on an airflow path through window, ceiling vent, attic, and then chimney cavity. Solar chimney performance, quantified by the natural ventilation rate, presented power function with window area, ceiling vent area, cavity height, and solar radiation. The ceiling vent is suggested to be closer to the corridor to enhance the performance and ventilation coverage of the room. A cavity gap of 1.0 m is recommended to balance the ventilation performance and construction cost. A theoretical model was also developed for aged care centers with multiple rooms and a joint attic. Its predictions obey reasonably well with the numerical results. Solar chimney's viability in aged care center is confirmed as a 7.22 air change per hour (ACH) ventilation can be achieved even under a low solar radiation intensity of 200 W/m2, where its performance fulfills the minimal ventilation requirement (i.e., 6 ACH) suggested by the WHO for airborne infection isolation rooms. This study offers a new design and a guideline for the future implementation of solar chimney in aged care centers or similar facilities.
Collapse
Affiliation(s)
- Qingyuan Wang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Guomin Zhang
- Civil and Infrastructure Engineering, School of Engineering, RMIT University, Melbourne 3004, Australia
| | - Qihong Wu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Long Shi
- Civil and Infrastructure Engineering, School of Engineering, RMIT University, Melbourne 3004, Australia
| |
Collapse
|
12
|
Hu T, Ji Y, Fei F, Zhu M, Jin T, Xue P, Zhang N. Optimization of COVID-19 prevention and control with low building energy consumption. BUILDING AND ENVIRONMENT 2022; 219:109233. [PMID: 35664635 PMCID: PMC9148426 DOI: 10.1016/j.buildenv.2022.109233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 05/20/2023]
Abstract
COVID-19 is a global threat. Non-pharmaceutical interventions were commonly adopted for COVID-19 prevention and control. However, during stable periods of the pandemic, energy would be inevitably wasted if all interventions were implemented. The study aims to reduce the building energy consumption when meet the demands of epidemic prevention and control under the stable period of COVID-19. Based on the improved Wells-Riley model considering dynamic quanta generation and pulmonary ventilation rate, we established the infection risk - equivalent fresh air volume - energy consumption model to analyze the infection risk and building energy consumption during different seasons and optimized the urban building energy consumption according to the spatio-temporal population distribution. Shopping centers and restaurants contributed the most in urban energy consumption, and if they are closed during the pandemic, the total infection risk would be reduced by 25%-40% and 15%-25% respectively and the urban energy consumption would be reduced by 30%-40% and 13%-20% respectively. If people wore masks in all public indoor environments (exclude restaurants and KTV), the infection risk could be reduced by 60%-70% and the energy consumption could be reduced by 20%-60%. Gyms pose the highest risk for COVID-19 transmission. If the energy consumption kept the same with the current value, after the optimization, infection risk in winter, summer and the transition season could be reduced by 65%, 53% and 60%, respectively. After the optimization, under the condition of R t < 1, the energy consumption in winter, summer, and the transition season could be reduced by 72%, 64%, and 68% respectively.
Collapse
Affiliation(s)
- Tingrui Hu
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Ying Ji
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Fan Fei
- College of Mechatronical and Electrical Engineering, Hebei Agricultural University, Hebei province, China
| | - Min Zhu
- 6th Medical Center of General Hospital of PLA, Beijing, China
| | - Tianyi Jin
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Peng Xue
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Nan Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| |
Collapse
|
13
|
Risk Assessment and Prevention Strategy of Virus Infection in the Context of University Resumption. BUILDINGS 2022. [DOI: 10.3390/buildings12060806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The risk assessment system of virus infection probability and the prevention measures for virus transmission are keys to controlling epidemics. In the context of university resumption, this study identifies the risk elements in terms of the mechanism of virus transmission. The effect of two recognized effective measures, i.e., occupancy constraints and ventilation intervention, on the infection risk are quantified and compared using the improved Wells–Riley model. Considering the priority of these two measures, the controlling quantity are determined, and the optimal schemes are proposed based on the targeted infection risk. The results show that the effect of reducing infection risk by constraining occupancy within 25% of all public campus buildings is better than that achieved by increasing the ventilation rate alone. If the ventilation system of the building type is operated by occupiers, it is a priority to prevent the risk of virus infection by restricting occupancy and ensuring the distance between occupants, while if the ventilation system of the building type is centrally controlled, it is a priority to increase the ventilation rate and then limit the occupancy rate during peak periods to 75%.
Collapse
|