1
|
Deng H, Chen Y, Xing J, Zhang N, Xu L. Systematic low-grade chronic inflammation and intrinsic mechanisms in polycystic ovary syndrome. Front Immunol 2024; 15:1470283. [PMID: 39749338 PMCID: PMC11693511 DOI: 10.3389/fimmu.2024.1470283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder affecting 6-20% of women of childbearing age worldwide. Immune cell imbalance and dysregulation of inflammatory factors can lead to systematic low-grade chronic inflammation (SLCI), which plays a pivotal role in the pathogenesis of PCOS. A significant higher infiltration of immune cells such as macrophages and lymphocytes and pro-inflammatory factors IL-6 and TNF-α has been detected in PCOS organ systems, impacting not only the female reproductive system but also other organs such as the cardiovascular, intestine, liver, thyroid, brain and other organs. Obesity, insulin resistance (IR), steroid hormones imbalance and intestinal microecological imbalance, deficiencies in vitamin D and selenium, as well as hyperhomocysteinemia (HHcy) can induce systematic imbalance between pro-inflammatory and anti-inflammatory cells and molecules. The pro-inflammatory cells and cytokines also interact with obesity, steroid hormones imbalance and IR, leading to increased metabolic imbalance and reproductive-endocrine dysfunction in PCOS patients. This review aims to summarize the dysregulation of immune response in PCOS organ system and the intrinsic mechanisms affecting SLCI in PCOS to provide new insights for the systemic inflammatory treatment of PCOS in the future.
Collapse
Affiliation(s)
- Hongxia Deng
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Chen
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jilong Xing
- Division of Renal and Endocrinology, Qin Huang Hospital, Xi’an, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liangzhi Xu
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Al‐Kuraishy HM, Al‐Maiahy TJ, Al‐Gareeb AI, Alexiou A, Papadakis M, Elhussieny O, Saad HM, Batiha GE. New insights on the potential effect of progesterone in Covid-19: Anti-inflammatory and immunosuppressive effects. Immun Inflamm Dis 2023; 11:e1100. [PMID: 38018575 PMCID: PMC10683562 DOI: 10.1002/iid3.1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a pandemic disease caused by severe acute respiratory syndrome CoV type 2 (SARS-CoV-2). COVID-19 is higher in men than women and sex hormones have immune-modulator effects during different viral infections, including SARS-CoV-2 infection. One of the essential sex hormones is progesterone (P4). AIMS This review aimed to reveal the association between P4 and Covid-19. RESULTS AND DISCUSSION The possible role of P4 in COVID-19 could be beneficial through the modulation of inflammatory signaling pathways, induction of the release of anti-inflammatory cytokines, and inhibition release of pro-inflammatory cytokines. P4 stimulates skew of naïve T cells from inflammatory Th1 toward anti-inflammatory Th2 with activation release of anti-inflammatory cytokines, and activation of regulatory T cells (Treg) with decreased interferon-gamma production that increased during SARS-CoV-2 infection. In addition, P4 is regarded as a potent antagonist of mineralocorticoid receptor (MR), it could reduce MRs that were activated by stimulated aldosterone from high AngII during SARS-CoV-2. P4 active metabolite allopregnanolone is regarded as a neurosteroid that acts as a positive modulator of γ-aminobutyric acid (GABAA ) so it may reduce neuropsychiatric manifestations and dysautonomia in COVID-19 patients. CONCLUSION Taken together, the anti-inflammatory and immunomodulatory properties of P4 may improve central and peripheral complications in COVID-19.
Collapse
Affiliation(s)
- Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Thabat J. Al‐Maiahy
- Department of Gynecology and Obstetrics, College of MedicineAl‐Mustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & DevelopmentAFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐Herdecke, Heusnerstrasse 40University of Witten‐HerdeckeWuppertalGermany
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary MedicineMatrouh UniversityMarsa MatruhEgypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMarsa MatruhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour University, DamanhourAlBeheiraEgypt
| |
Collapse
|
3
|
Sharma A, Kaur M, Yadav P, Singh G, Barnwal RP. Expediting the drug discovery for ideal leads against SARS-CoV-2 via molecular docking of repurposed drugs. J Biomol Struct Dyn 2023; 41:7949-7965. [PMID: 36165445 DOI: 10.1080/07391102.2022.2127903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
Abstract
SARS-CoV-2, the novel coronavirus spreading worldwide urges the need to repurpose drugs that can quickly enter clinical trials to combat the on-going global pandemic. A cluster of proteins are encoded for by the viral genome, each assuming a critical role in pathogen endurance inside the host. To handle the adverse circumstances, robust virtual strategies such as repurposing are coming to the fore due to being economical, efficient and rapid. Five FDA approved repurposed drugs proposed to act as inhibitors by targeting SARS-CoV-2 were used for initial evaluation via molecular docking. Moreover, a comparative analysis of the selected SARS-CoV-2 proteins against five ligands (Clemizole hydrochloride, Exemestane, Nafamostat, Pregnenolone and Umifenovir) was designed. In this regard, non-structural proteins (nsp3, nsp5, nsp10, nsp12 and nsp15), structural proteins (Spike, Nucleocapsid protein) and accessory proteins (ORF 3a, ORF 7a and ORF 9 b) were selected. Here, we aim to expedite the search for a potential drug from the five FDA approved repurposing drugs already in use for treatment of multiple diseases. Based on docking analysis, Umifenovir and Pregnenolone are suggested to show potential inhibitory effects against most of the SARS-CoV-2 proteins. These drugs are noteworthy since they exhibit high binding towards target proteins and should be used as lead compounds towards in vitro and in vivo studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Mandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Priya Yadav
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
4
|
Fedotcheva TA, Fedotcheva NI, Shimanovsky NL. Progesterone as an Anti-Inflammatory Drug and Immunomodulator: New Aspects in Hormonal Regulation of the Inflammation. Biomolecules 2022; 12:biom12091299. [PMID: 36139138 PMCID: PMC9496164 DOI: 10.3390/biom12091299] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022] Open
Abstract
The specific regulation of inflammatory processes by steroid hormones has been actively studied in recent years, especially by progesterone (P4) and progestins. The mechanisms of the anti-inflammatory and immunomodulatory P4 action are not fully clear. The anti-inflammatory effects of P4 can be defined as nonspecific, associated with the inhibition of NF-κB and COX, as well as the inhibition of prostaglandin synthesis, or as specific, associated with the regulation of T-cell activation, the regulation of the production of pro- and anti-inflammatory cytokines, and the phenomenon of immune tolerance. The specific anti-inflammatory effects of P4 and its derivatives (progestins) can also include the inhibition of proliferative signaling pathways and the antagonistic action against estrogen receptor beta-mediated signaling as a proinflammatory and mitogenic factor. The anti-inflammatory action of P4 is accomplished through the participation of progesterone receptor (PR) chaperones HSP90, as well as immunophilins FKBP51 and FKBP52, which are the validated targets of clinically approved immunosuppressive drugs. The immunomodulatory and anti-inflammatory effects of HSP90 inhibitors, tacrolimus and cyclosporine, are manifested, among other factors, due to their participation in the formation of an active ligand–receptor complex of P4 and their interaction with its constituent immunophilins. Pharmacological agents such as HSP90 inhibitors can restore the lost anti-inflammatory effect of glucocorticoids and P4 in chronic inflammatory and autoimmune diseases. By regulating the activity of FKBP51 and FKBP52, it is possible to increase or decrease hormonal signaling, as well as restore it during the development of hormone resistance. The combined action of immunophilin suppressors with steroid hormones may be a promising strategy in the treatment of chronic inflammatory and autoimmune diseases, including endometriosis, stress-related disorders, rheumatoid arthritis, and miscarriages. Presumably, the hormone receptor- and immunophilin-targeted drugs may act synergistically, allowing for a lower dose of each.
Collapse
Affiliation(s)
- Tatiana A. Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia
- Correspondence: ; Tel.: +7-9169353196
| | - Nadezhda I. Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str. 3, Pushchino 142290, Russia
| | - Nikolai L. Shimanovsky
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia
| |
Collapse
|
5
|
Yang D, Li H, Chen Y, Ren W, Dong M, Li C, Jiao Q. Immunomodulatory mechanisms of abatacept: A therapeutic strategy for COVID-19. Front Med (Lausanne) 2022; 9:951115. [PMID: 35957855 PMCID: PMC9357915 DOI: 10.3389/fmed.2022.951115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by coronavirus-2 (SARS-CoV-2) infection has rapidly spread throughout the world and become a major threat to human beings. Cytokine storm is a major cause of death in severe patients. Abatacept can suppress cytokines used as antirheumatic drugs in clinical applications. This study analyzed the molecular mechanisms of abatacept treatment for COVID-19. Differentially expressed genes (DEGs) were identified by analyzing expression profiling of abatacept treatment for rheumatoid arthritis (RA) patients and SARS-CoV-2 infection patients. We found that 59 DEGs were upregulated in COVID-19 patients and downregulated following abatacept treatment. Gene set enrichment analysis (GSEA) and Gene Ontology (GO) analysis showed that immune and inflammatory responses were potential regulatory mechanisms. Moreover, we verified 8 targeting genes and identified 15 potential drug candidates for the treatment of COVID-19. Our study illustrated that abatacept could be a promising property for preventing severe COVID-19, and we predicted alternative potential drugs for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Dinglong Yang
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Hetong Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yujing Chen
- School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Weiping Ren
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Mingjie Dong
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chunjiang Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiang Jiao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Qiang Jiao
| |
Collapse
|
6
|
Hashimoto Y, Suzuki T, Hashimoto K. Mechanisms of action of fluvoxamine for COVID-19: a historical review. Mol Psychiatry 2022; 27:1898-1907. [PMID: 34997196 PMCID: PMC8739627 DOI: 10.1038/s41380-021-01432-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) accelerates the discovery of prophylactic and therapeutic drugs for persons infected with the virus. Drug repurposing for the COVID-19 pandemic has received particular attention. Increasing clinical data suggest that antidepressant use in early-stage subjects with COVID-19 might be associated with a reduced risk of intubation or death. Among the antidepressants, fluvoxamine is the most attractive drug for mild to moderate subjects with COVID-19. In this article, we review the mechanisms of action (i.e., serotonin transporter, sigma-1 receptor, and acid sphingomyelinase) of fluvoxamine for COVID-19. Furthermore, we discuss a possible link between maternal COVID-19 infection and a risk for neuropsychiatric disorders (i.e., autism spectrum disorder and schizophrenia) in offspring.
Collapse
Affiliation(s)
- Yaeko Hashimoto
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Takuji Suzuki
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
7
|
Choi SW, Kim J, Lee JH, Kim SK, Lee SR, Kim SH, Chae HD. Hormone Therapy in the Era of the COVID-19 Pandemic: A Review. J Menopausal Med 2022; 28:1-8. [PMID: 35534425 PMCID: PMC9086346 DOI: 10.6118/jmm.21036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 11/05/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has impacted the medical, social, and reproductive health of millions of people since its outbreak. The causative virus transmits, reproduces, and manifests through the respiratory tract. COVID-19 can invade any system of the body, including the cardiovascular and endocrine systems, through a secondary immune response. In particular, because the fatality rate is high in those over the age of 50 years, special attention is required during the medical care of this population. However, considering the benefit of therapy and the risk of COVID-19, high-quality evidence regarding individualized management in relation to hormone therapy is still insufficient in the field of gynecology. Furthermore, this review aims to serve as a reference for clinical application by analyzing and summarizing the results of studies reported to date regarding female hormone therapy in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sung Wook Choi
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Juhee Kim
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Hoon Lee
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seul Ki Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sa Ra Lee
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Hoon Kim
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Dong Chae
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|