1
|
Yew M, Yang Y, Wang Q, Zhu L. High-throughput screening strategies for plastic-depolymerizing enzymes. Trends Biotechnol 2025:S0167-7799(24)00387-1. [PMID: 39843328 DOI: 10.1016/j.tibtech.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
A multitude of plastic-depolymerizing microorganisms and enzymes have been discovered in the plastisphere. Identifying and engineering such microbial strains and enzymes necessitate robust and high-throughput screening strategies for developing effective microbial solutions to counter the plastic accumulation problem and decouple the reliance on fossil resources. This review covers new methods and approaches for the effective high-throughput screening of depolymerizing enzymes for various plastics, such as polyethylene terephthalate (PET), polyurethane (PU), and polylactic acid (PLA). We discuss the application scope of the existing methods, as well as potential developments and integration of screening techniques to identify and enhance plastic depolymerases. The prospects for screening a wider range of plastic depolymerases with the advances in biotechnology tools such as droplet microfluidics and biosensors are highlighted.
Collapse
Affiliation(s)
- Maxine Yew
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yifan Yang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.
| | - Leilei Zhu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.
| |
Collapse
|
2
|
Fohler L, Leibetseder L, Cserjan-Puschmann M, Striedner G. Manufacturing of the highly active thermophile PETases PHL7 and PHL7mut3 using Escherichia coli. Microb Cell Fact 2024; 23:272. [PMID: 39390547 PMCID: PMC11465579 DOI: 10.1186/s12934-024-02551-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The global plastic waste crisis requires combined recycling strategies. One approach, enzymatic degradation of PET waste into monomers, followed by re-polymerization, offers a circular economy solution. However, challenges remain in producing sufficient amounts of highly active PET-degrading enzymes without costly downstream processes. RESULTS Using the growth-decoupled enGenes eX-press V2 E. coli strain, pH, induction strength and feed rate were varied in a factorial-based optimization approach, to find the best-suited production conditions for the PHL7 enzyme. This led to a 40% increase in activity of the fermentation supernatant. Optimization of the expression construct resulted in a further 4-fold activity gain. Finally, the identified improvements were applied to the production of the more active and temperature stable enzyme variant, PHL7mut3. The unpurified fermentation supernatant of the PHL7mut3 fermentation was able to completely degrade our PET film sample after 16 h of incubation at 70 °C at an enzyme loading of only 0.32 mg enzyme per g of PET. CONCLUSIONS In this research, we present an optimized process for the extracellular production of thermophile and highly active PETases PHL7 and PHL7mut3, eliminating the need for costly purification steps. These advancements support large-scale enzymatic recycling, contributing to solving the global plastic waste crisis.
Collapse
Affiliation(s)
- Lisa Fohler
- Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Lukas Leibetseder
- Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Monika Cserjan-Puschmann
- Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Gerald Striedner
- Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, Vienna, 1190, Austria.
| |
Collapse
|
3
|
Wu X, Wan J, Wang Q, Liu Z, Xia Y, Xun L, Liu H. Using the sulfide-oxidizing bacterium Geobacillus thermodenitrificans to restrict H 2S release during chicken manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120416. [PMID: 38408391 DOI: 10.1016/j.jenvman.2024.120416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Hydrogen sulfide (H2S) is a toxic gas massively released during chicken manure composting. Diminishing its release requires efficient and low cost methods. In recent years, heterotrophic bacteria capable of rapid H2S oxidation have been discovered but their applications in environmental improvement are rarely reported. Herein, we investigated H2S oxidation activity of a heterotrophic thermophilic bacterium Geobacillus thermodenitrificans DSM465, which contains a H2S oxidation pathway composed by sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO). This strain rapidly oxidized H2S to sulfane sulfur and thiosulfate. The oxidation rate reached 5.73 μmol min-1·g-1 of cell dry weight. We used G. thermodenitrificans DSM465 to restrict H2S release during chicken manure composting. The H2S emission during composting process reduced by 27.5% and sulfate content in the final compost increased by 34.4%. In addition, this strain prolonged the high temperature phase by 7 days. Thus, using G. thermodenitrificans DSM465 to control H2S release was an efficient and economic method. This study provided a new strategy for making waste composting environmental friendly and shed light on perspective applications of heterotrophic H2S oxidation bacteria in environmental improvements.
Collapse
Affiliation(s)
- Xiaohua Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, PR China
| | - Jiahui Wan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, PR China
| | - Qingda Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, PR China
| | - Zongzheng Liu
- Qingdao Institute of Animal Husbandry and Veterinary Medicine, PR China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, PR China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, PR China; School of Molecular Biosciences, Washington State University, Pullman, WA, 991647520, USA.
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, PR China.
| |
Collapse
|
4
|
Naidu G, Nagar N, Poluri KM. Mechanistic Insights into Cellular and Molecular Basis of Protein-Nanoplastic Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305094. [PMID: 37786309 DOI: 10.1002/smll.202305094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Plastic waste is ubiquitously present across the world, and its nano/sub-micron analogues (plastic nanoparticles, PNPs), raise severe environmental concerns affecting organisms' health. Considering the direct and indirect toxic implications of PNPs, their biological impacts are actively being studied; lately, with special emphasis on cellular and molecular mechanistic intricacies. Combinatorial OMICS studies identified proteins as major regulators of PNP mediated cellular toxicity via activation of oxidative enzymes and generation of ROS. Alteration of protein function by PNPs results in DNA damage, organellar dysfunction, and autophagy, thus resulting in inflammation/cell death. The molecular mechanistic basis of these cellular toxic endeavors is fine-tuned at the level of structural alterations in proteins of physiological relevance. Detailed biophysical studies on such protein-PNP interactions evidenced prominent modifications in their structural architecture and conformational energy landscape. Another essential aspect of the protein-PNP interactions includes bioenzymatic plastic degradation perspective, as the interactive units of plastics are essentially nano-sized. Combining all these attributes of protein-PNP interactions, the current review comprehensively documented the contemporary understanding of the concerned interactions in the light of cellular, molecular, kinetic/thermodynamic details. Additionally, the applicatory, economical facet of these interactions, PNP biogeochemical cycle and enzymatic advances pertaining to plastic degradation has also been discussed.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
5
|
Joho Y, Vongsouthi V, Gomez C, Larsen JS, Ardevol A, Jackson CJ. Improving plastic degrading enzymes via directed evolution. Protein Eng Des Sel 2024; 37:gzae009. [PMID: 38713696 PMCID: PMC11091475 DOI: 10.1093/protein/gzae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/09/2024] Open
Abstract
Plastic degrading enzymes have immense potential for use in industrial applications. Protein engineering efforts over the last decade have resulted in considerable enhancement of many properties of these enzymes. Directed evolution, a protein engineering approach that mimics the natural process of evolution in a laboratory, has been particularly useful in overcoming some of the challenges of structure-based protein engineering. For example, directed evolution has been used to improve the catalytic activity and thermostability of polyethylene terephthalate (PET)-degrading enzymes, although its use for the improvement of other desirable properties, such as solvent tolerance, has been less studied. In this review, we aim to identify some of the knowledge gaps and current challenges, and highlight recent studies related to the directed evolution of plastic-degrading enzymes.
Collapse
Affiliation(s)
- Yvonne Joho
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Research Way, Clayton, Victoria 3168, Australia
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
- CSIRO Advanced Engineering Biology Future Science Platform, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Vanessa Vongsouthi
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
| | - Chloe Gomez
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
| | - Joachim S Larsen
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Synthetic Biology, Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
| | - Albert Ardevol
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Research Way, Clayton, Victoria 3168, Australia
- CSIRO Advanced Engineering Biology Future Science Platform, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Synthetic Biology, Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Sullivans Creek Rd, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Duan S, Zhang N, Chao T, Wu Y, Wang M. The structural and molecular mechanisms of type II PETases: a mini review. Biotechnol Lett 2023; 45:1249-1263. [PMID: 37535135 DOI: 10.1007/s10529-023-03418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023]
Abstract
The advent of plastics has led to significant advances for humans, although the accompanying pollution has also been a source of concern for countries globally. Consequently, a biological method to effectively degrade polyethylene terephthalate (PET) has been an area of significant scientific interest. Following the report of the highly efficient PET hydrolase from the bacterium Ideonella sakaiensis strain 201-F6 (i.e., IsPETase) in 2016, its structure has been extensively studied, showing that it belongs to the type II PETase group. Unlike type I PETases that include most known cutinases, structural investigations of type II PETases have only been conducted since 2017. Type II PETases are further divided into type IIa and IIb enzymes. Moreover, even less research has been conducted on type IIa plastic-degrading enzymes. Here, we present a review of recent studies of the structure and mechanism of type II PETases, using the known structure of the type IIa PETase PE-H from the marine bacterium Pseudomonas aestusnigri in addition to the type IIb enzyme IsPETase as representatives. These studies have provided new insights into the structural features of type II PETases that exhibit PET catalytic activity. In addition, recent studies investigating the rational design of IsPETases are reviewed and summarized alongside a discussion of controversies surrounding PETase investigations.
Collapse
Affiliation(s)
- Shuyan Duan
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, Shandong, China.
| | - Nan Zhang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, Shandong, China
| | - Tianzhu Chao
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, Shandong, China
| | - Yaoyao Wu
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, Shandong, China
| | - Mengying Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
7
|
Su T, Zhang T, Liu P, Bian J, Zheng Y, Yuan Y, Li Q, Liang Q, Qi Q. Biodegradation of polyurethane by the microbial consortia enriched from landfill. Appl Microbiol Biotechnol 2023; 107:1983-1995. [PMID: 36763115 PMCID: PMC9911954 DOI: 10.1007/s00253-023-12418-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Polyurethanes (PU) are one of the most used categories of plastics and have become a significant source of environmental pollutants. Degrading the refractory PU wastes using environmentally friendly strategies is in high demand. In this study, three microbial consortia from the landfill leachate were enriched using PU powder as the sole carbon source. The consortia efficiently degraded polyester PU film and accumulated high biomass within 1 week. Scanning electron microscopy, Fourier transform infrared spectroscopy, and contact angle analyses showed significant physical and chemical changes to the PU film after incubating with the consortia for 48 h. In addition, the degradation products adipic acid and butanediol were detected by high-performance liquid chromatography in the supernatant of the consortia. Microbial composition and extracellular enzyme analyses revealed that the consortia can secrete esterase and urease, which were potentially involved in the degradation of PU. The dominant microbes in the consortia changed when continuously passaged for 50 generations of growth on the PU films. This work demonstrates the potential use of microbial consortia in the biodegradation of PU wastes. KEY POINTS: • Microbial consortia enriched from landfill leachate degraded polyurethane film. • Consortia reached high biomass within 1 week using polyurethane film as the sole carbon source. • The consortia secreted potential polyurethane-degrading enzymes.
Collapse
Affiliation(s)
- Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Tong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Pan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Junling Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yi Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yingbo Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Qingbin Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|