1
|
McDonnell L, Evans S, Lu Z, Suchoronczak M, Leighton J, Ordeniza E, Ritchie B, Valado N, Walsh N, Antoney J, Wang C, Luna-Flores CH, Scott C, Speight R, Vickers CE, Peng B. Cyanamide-inducible expression of homing nuclease I- SceI for selectable marker removal and promoter characterisation in Saccharomyces cerevisiae. Synth Syst Biotechnol 2024; 9:820-827. [PMID: 39072146 PMCID: PMC11277796 DOI: 10.1016/j.synbio.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
In synthetic biology, microbial chassis including yeast Saccharomyces cerevisiae are iteratively engineered with increasing complexity and scale. Wet-lab genetic engineering tools are developed and optimised to facilitate strain construction but are often incompatible with each other due to shared regulatory elements, such as the galactose-inducible (GAL) promoter in S. cerevisiae. Here, we prototyped the cyanamide-induced I- SceI expression, which triggered double-strand DNA breaks (DSBs) for selectable marker removal. We further combined cyanamide-induced I- SceI-mediated DSB and maltose-induced MazF-mediated negative selection for plasmid-free in situ promoter substitution, which simplified the molecular cloning procedure for promoter characterisation. We then characterised three tetracycline-inducible promoters showing differential strength, a non-leaky β-estradiol-inducible promoter, cyanamide-inducible DDI2 promoter, bidirectional MAL32/MAL31 promoters, and five pairs of bidirectional GAL1/GAL10 promoters. Overall, alternative regulatory controls for genome engineering tools can be developed to facilitate genomic engineering for synthetic biology and metabolic engineering applications.
Collapse
Affiliation(s)
- Liam McDonnell
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
| | - Samuel Evans
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
| | - Zeyu Lu
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mitch Suchoronczak
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Jonah Leighton
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Eugene Ordeniza
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Blake Ritchie
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nik Valado
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Niamh Walsh
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - James Antoney
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
| | - Chengqiang Wang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, 271018, People's Republic of China
| | - Carlos Horacio Luna-Flores
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, 2601, Australia
| | - Robert Speight
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
- Advanced Engineering Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia
| | - Claudia E. Vickers
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
| | - Bingyin Peng
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
2
|
Lu Z, Shen Q, Bandari NC, Evans S, McDonnell L, Liu L, Jin W, Luna-Flores CH, Collier T, Talbo G, McCubbin T, Esquirol L, Myers C, Trau M, Dumsday G, Speight R, Howard CB, Vickers CE, Peng B. LowTempGAL: a highly responsive low temperature-inducible GAL system in Saccharomyces cerevisiae. Nucleic Acids Res 2024; 52:7367-7383. [PMID: 38808673 PMCID: PMC11229376 DOI: 10.1093/nar/gkae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Temperature is an important control factor for biologics biomanufacturing in precision fermentation. Here, we explored a highly responsive low temperature-inducible genetic system (LowTempGAL) in the model yeast Saccharomyces cerevisiae. Two temperature biosensors, a heat-inducible degron and a heat-inducible protein aggregation domain, were used to regulate the GAL activator Gal4p, rendering the leaky LowTempGAL systems. Boolean-type induction was achieved by implementing a second-layer control through low-temperature-mediated repression on GAL repressor gene GAL80, but suffered delayed response to low-temperature triggers and a weak response at 30°C. Application potentials were validated for protein and small molecule production. Proteomics analysis suggested that residual Gal80p and Gal4p insufficiency caused suboptimal induction. 'Turbo' mechanisms were engineered through incorporating a basal Gal4p expression and a galactose-independent Gal80p-supressing Gal3p mutant (Gal3Cp). Varying Gal3Cp configurations, we deployed the LowTempGAL systems capable for a rapid stringent high-level induction upon the shift from a high temperature (37-33°C) to a low temperature (≤30°C). Overall, we present a synthetic biology procedure that leverages 'leaky' biosensors to deploy highly responsive Boolean-type genetic circuits. The key lies in optimisation of the intricate layout of the multi-factor system. The LowTempGAL systems may be applicable in non-conventional yeast platforms for precision biomanufacturing.
Collapse
Affiliation(s)
- Zeyu Lu
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Qianyi Shen
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Naga Chandra Bandari
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samuel Evans
- ARC Centre of Excellence in Synthetic Biology, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Liam McDonnell
- ARC Centre of Excellence in Synthetic Biology, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Lian Liu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- The Queensland Node of Metabolomics Australia and Proteomics Australia (Q-MAP), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wanli Jin
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Carlos Horacio Luna-Flores
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Thomas Collier
- ARC Centre of Excellence in Synthetic Biology, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Gert Talbo
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- The Queensland Node of Metabolomics Australia and Proteomics Australia (Q-MAP), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tim McCubbin
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lygie Esquirol
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Environment, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Chris Myers
- Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder, CO 80309, USA
| | - Matt Trau
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences (SCMB), the University of Queensland, Brisbane, QLD 4072, Australia
| | - Geoff Dumsday
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, 3169, Australia
| | - Robert Speight
- ARC Centre of Excellence in Synthetic Biology, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Advanced Engineering Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Claudia E Vickers
- ARC Centre of Excellence in Synthetic Biology, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Bingyin Peng
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
3
|
Peng B, Weintraub SJ, Lu Z, Evans S, Shen Q, McDonnell L, Plan M, Collier T, Cheah LC, Ji L, Howard CB, Anderson W, Trau M, Dumsday G, Bredeweg EL, Young EM, Speight R, Vickers CE. Integration of Yeast Episomal/Integrative Plasmid Causes Genotypic and Phenotypic Diversity and Improved Sesquiterpene Production in Metabolically Engineered Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:141-156. [PMID: 38084917 DOI: 10.1021/acssynbio.3c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The variability in phenotypic outcomes among biological replicates in engineered microbial factories presents a captivating mystery. Establishing the association between phenotypic variability and genetic drivers is important to solve this intricate puzzle. We applied a previously developed auxin-inducible depletion of hexokinase 2 as a metabolic engineering strategy for improved nerolidol production in Saccharomyces cerevisiae, and biological replicates exhibit a dichotomy in nerolidol production of either 3.5 or 2.5 g L-1 nerolidol. Harnessing Oxford Nanopore's long-read genomic sequencing, we reveal a potential genetic cause─the chromosome integration of a 2μ sequence-based yeast episomal plasmid, encoding the expression cassettes for nerolidol synthetic enzymes. This finding was reinforced through chromosome integration revalidation, engineering nerolidol and valencene production strains, and generating a diverse pool of yeast clones, each uniquely fingerprinted by gene copy numbers, plasmid integrations, other genomic rearrangements, protein expression levels, growth rate, and target product productivities. Τhe best clone in two strains produced 3.5 g L-1 nerolidol and ∼0.96 g L-1 valencene. Comparable genotypic and phenotypic variations were also generated through the integration of a yeast integrative plasmid lacking 2μ sequences. Our work shows that multiple factors, including plasmid integration status, subchromosomal location, gene copy number, sesquiterpene synthase expression level, and genome rearrangement, together play a complicated determinant role on the productivities of sesquiterpene product. Integration of yeast episomal/integrative plasmids may be used as a versatile method for increasing the diversity and optimizing the efficiency of yeast cell factories, thereby uncovering metabolic control mechanisms.
Collapse
Affiliation(s)
- Bingyin Peng
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW 2109, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sarah J Weintraub
- Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States of America
| | - Zeyu Lu
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW 2109, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samuel Evans
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW 2109, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Qianyi Shen
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW 2109, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, Brisbane, QLD4072, Australia
| | - Liam McDonnell
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW 2109, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Manuel Plan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Metabolomics Australia (Queensland Node), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Collier
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW 2109, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Li Chen Cheah
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW 2109, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, PR China
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Will Anderson
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matt Trau
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, Brisbane, QLD4072, Australia
| | | | - Erin L Bredeweg
- Functional and Systems Biology Group, Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric M Young
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Robert Speight
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW 2109, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Advanced Engineering Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT 2601, Australia
| | - Claudia E Vickers
- ARC Centre of Excellence in Synthetic Biology, Sydney, NSW 2109, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
4
|
Affiliation(s)
- Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|