1
|
Satyam S, Patra S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon 2024; 10:e29573. [PMID: 38699034 PMCID: PMC11064087 DOI: 10.1016/j.heliyon.2024.e29573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Water contamination is an escalating emergency confronting communities worldwide. While traditional adsorbents have laid the groundwork for effective water purification, their selectivity, capacity, and sustainability limitations have driven the search for more advanced solutions. Despite many technological advancements, economic, environmental, and regulatory hurdles challenge the practical application of advanced adsorption techniques in large-scale water treatment. Integrating nanotechnology, advanced material fabrication techniques, and data-driven design enabled by artificial intelligence (AI) and machine learning (ML) have led to a new generation of optimized, high-performance adsorbents. These advanced materials leverage properties like high surface area, tailored pore structures, and functionalized surfaces to capture diverse water contaminants efficiently. With a focus on sustainability and effectiveness, this review highlights the transformative potential of these advanced materials in setting new benchmarks for water purification technologies. This article delivers an in-depth exploration of the current landscape and future directions of adsorbent technology for water remediation, advocating for a multidisciplinary approach to overcome existing barriers in large-scale water treatment applications.
Collapse
Affiliation(s)
- Satyam Satyam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
2
|
Rabee M, Elmogy SA, Morsy M, Lawandy S, Zahran MAH, Moustafa H. Biosynthesis of MgO Nanoparticles and Their Impact on the Properties of the PVA/Gelatin Nanocomposites for Smart Food Packaging Applications. ACS APPLIED BIO MATERIALS 2023; 6:5037-5051. [PMID: 37909223 DOI: 10.1021/acsabm.3c00723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fabricating active and intelligent packaging materials has become the highest demand for catering to market needs, especially after the COVID-19 pandemic, for ensuring food safety. Thus, the wider objective of this article was to promote active and smart packaging biofilms possessing antibacterial and humidity-sensing properties for sustainable poly(vinyl alcohol) (PVA)/gelatin (Ge) reinforced with biosynthesized magnesium nanoparticles (MgO NPs) by a solvent-casting route. The UV-visible spectrum has been utilized to determine the optimized biosynthesized MgO NPs and then the nanostructure of optimized MgO NPs investigated by varying techniques such as XRD, SEM-EDX, TEM, FT-IR, and thermogravimetric analysis. Four MgO NPs proportions (i.e., 1, 3, 5, and 10 wt %) were used to fabricate PVA/Ge biofilms. In the biofilms system, the tensile results showcased that the nanocomposite film containing 5 wt % of MgO NPs had the highest tensile strength value (i.e., 22.10 MPs) compared to the other biofilms or the unfilled blank (i.e., 6.30 MPs). Correspondingly, the humidity-sensing data revealed that the PVA/Ge-1% MgO NPs sensor had higher sensitivity over a broad range of relative humidity from (7-97% RH) and at 100 Hz. Additionally, the hydrophobicity of biofilms, measured by water contact angle, UV-stability, and antioxidant and antibacterial properties was also analyzed to possibly use these biofilms in active food packaging with extended shelf life of foodstuffs. However, the PVA/Ge-1% MgO NPs biofilm was predominately found to possess attractive sensing properties and could be considered as a sensor for intelligent food packaging.
Collapse
Affiliation(s)
- Marwa Rabee
- Department of Polymer Metrology & Technology, National Institute of Standards (NIS), Tersa Street, El Haram, P.O. Box 136, Giza 12211, Egypt
- Bioanalysis Laboratory, National Institute of Standards (NIS), Tersa Street, El Haram, P.O. Box 136, Giza 12211, Egypt
| | - Soma Ahmed Elmogy
- Materials Testing and Surface Chemical Analysis Lab, National Institute of Standards (NIS), Tersa Street, El Haram, P.O. Box 136, Giza 12211, Egypt
| | - Mohamed Morsy
- Building Physics and Environment Institute, Housing and Building National Research Center (HBRC), Dokki, P.O. Box 1770, Giza 12611, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El Sherouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Samir Lawandy
- Materials Testing and Surface Chemical Analysis Lab, National Institute of Standards (NIS), Tersa Street, El Haram, P.O. Box 136, Giza 12211, Egypt
| | - Magdy Abdle Hamid Zahran
- Organic Chemistry, Faculty of Science, Menoufia University, P.O. 325136, Shebin El-Kom 32511, Egypt
| | - Hesham Moustafa
- Department of Polymer Metrology & Technology, National Institute of Standards (NIS), Tersa Street, El Haram, P.O. Box 136, Giza 12211, Egypt
- Bioanalysis Laboratory, National Institute of Standards (NIS), Tersa Street, El Haram, P.O. Box 136, Giza 12211, Egypt
| |
Collapse
|
3
|
Hemida MH, Moustafa H, Mehanny S, Morsy M, Dufresne A, Abd EL Rahman EN, Ibrahim M. Cellulose nanocrystals from agricultural residues ( Eichhornia crassipes): Extraction and characterization. Heliyon 2023; 9:e16436. [PMID: 37292363 PMCID: PMC10245161 DOI: 10.1016/j.heliyon.2023.e16436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
Extraction of cellulose nanocrystals (CNCs) from agro-residues has received much attention, not only for their unique properties supporting a wide range of potential applications, but also their limited risk to global climate change. This research was conducted to assess Nile roses (Eichhornia crassipes) fibers as a natural biomass to extract CNCs through an acid hydrolysis approach. Nile roses fibers (NRFs) were initially subjected to alkaline (pulping) and bleaching pretreatments. Microcrystalline cellulose (MCC) was used as control in comparison to Nile rose based samples. All samples underwent acid hydrolysis process at a mild temperature (45 °C). The impact of extraction durations ranging from 5 to 30 min on the morphology structure and crystallinity index of the prepared CNCs was investigated. The prepared CNCs were subjected to various characterization techniques, namely: X-ray diffraction (XRD), FT-IR analysis, Transmission electron microscopy (TEM), and X-ray Photoelectron spectroscopy (XPS). The outcomes obtained by XRD showed that the crystallinity index increased as the duration of acid hydrolysis was prolonged up to 10 min, and then decreased, indicating optimal conditions for the dissolution of amorphous zones of cellulose before eroding the crystallized domains. These data were confirmed by FT-IR spectroscopy. However, a minor effect of hydrolysis duration on the degree of crystallinity was noticed for MCC based samples. TEM images illustrated that a spherical morphology of CNCs was formed as a result of 30 min acid hydrolysis, highlighting the optimal 20 min acid hydrolysis to obtain a fibrillar structure. The XPS study demonstrated that the main constituents of extracted CNCs were carbon and oxygen.
Collapse
Affiliation(s)
- Mohamed H. Hemida
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, Egypt
| | - Hesham Moustafa
- Department of Polymer Metrology & Technology, National Institute of Standards (NIS), Tersa Street, El Haram, P.O Box 136, Giza, 12211, Giza, Egypt
- Bioanalysis Laboratory, National Institute of Standards (NIS), Tersa Street, El Haram, P.O Box 136, Giza, 12211, Giza, Egypt
| | - Sherif Mehanny
- Department of Mechanical Design and Production, Faculty of Engineering, Cairo University, Egypt
| | - Mohamed Morsy
- Building Physics and Environment Institute, Housing and Building National Research Center (HBRC), Dokki, Giza, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt
| | - Alain Dufresne
- Université Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000, Grenoble, France
| | - Eid N. Abd EL Rahman
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, Egypt
| | - M.M. Ibrahim
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, Egypt
| |
Collapse
|
4
|
Tuli A, Singh AP. Polymer-based wearable nano-composite sensors: a review. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2023. [DOI: 10.1080/1023666x.2022.2161737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Aashish Tuli
- Mechanical Engineering, UIET Panjab University, Chandigarh, India
| | | |
Collapse
|
5
|
Sun X, Shiraz H, Wong R, Zhang J, Liu J, Lu J, Meng N. Enhancing the Performance of PVDF/GO Ultrafiltration Membrane via Improving the Dispersion of GO with Homogeniser. MEMBRANES 2022; 12:1268. [PMID: 36557175 PMCID: PMC9782047 DOI: 10.3390/membranes12121268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
In this study, PVDF/GO-h composite membranes were synthesised using a homogeniser to improve the dispersion of GO nanosheets within the composite membrane's structure, and then characterised and contrasted to PVDF/GO-s control samples, which were synthesised via traditional blending method-implementing a magnetic stirrer. By characterizing membrane via X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), water contact angle (WCA) and membrane performance. SEM results showed that the number of the finger-like structure channels and pores in the sponge like structure of PVDF/GO-h composite membranes become more compared with PVDF/GO-s membranes. Water contact angle tests showed that the PVDF/GO-h composite membranes have lower contact angle than PVDF/GO-s control, which indicated the PVDF/GO-h composite membranes are more hydrophilic. Results also showed that composite membranes blended using homogeniser exhibited both improved water flux and rejection of target pollutants. In summary, it was shown that the performance of composite membranes could be improved significantly via homogenisation during synthesis, thus outlining the importance of further research into proper mixing.
Collapse
Affiliation(s)
- Xin Sun
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Hana Shiraz
- Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia
| | - Riccardo Wong
- Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia
| | - Jingtong Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Jinxin Liu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Jun Lu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Na Meng
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
- Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|