1
|
Morreale M, La Mantia FP. Current Concerns about Microplastics and Nanoplastics: A Brief Overview. Polymers (Basel) 2024; 16:1525. [PMID: 38891471 PMCID: PMC11174615 DOI: 10.3390/polym16111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The widespread and increasing use of plastic-based goods in the present-day world has been raising many concerns about the formation of microplastics, their release, their impacts on the environment and, ultimately, on living organisms. These concerns are even greater regarding nanoplastics, i.e., nanosized microplastics, which may have even greater impacts. In this brief review, although without any claim or intention to exhaustively cover all the aspects of such a complex and many-sided issue, the very topical problem of the formation of microplastics, and the even more worrisome nanoplastics, from polymer-based products was considered. The approach is focused on a terse, straightforward, and easily accessible analysis oriented to the main technological engineering aspects regarding the sources of microplastics and nanoplastics released into the environment, their nature, some of the consequences arising from the release, the different polymers involved, their technological form (i.e., products or processes, with particular attention towards unintentional release), the formation mechanisms, and some possible mitigation pathways.
Collapse
Affiliation(s)
- Marco Morreale
- Department of Engineering and Architecture, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy;
| | - Francesco Paolo La Mantia
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
2
|
Álvarez-Fernández C, Matikainen E, McGuigan KG, Andrade JM, Marugán J. Evaluation of microplastics release from solar water disinfection poly(ethylene terephthalate) and polypropylene containers. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133179. [PMID: 38101015 DOI: 10.1016/j.jhazmat.2023.133179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Public health concern associated with the ingestion of microplastics (MPs) released from water packaging materials is increasing. The use of plastic materials for solar disinfection (SODIS) containers has also raised concerns in the SODIS community due to the lack of studies evaluating the presence of MPs in the treated water. In this work, the migration of MPs from poly(ethylene terephthalate, PET) bottles and polypropylene (PP) translucent and transparent jerrycan containers (TJC) into water under natural weathering was investigated using micro-reflectance Fourier Transform Infrared Spectroscopy (µ-FTIR). Containers exposed to sunlight for three months became photodegraded, releasing micro-sized fragments identified as PET, PP and high-density polyethylene (HDPE, from the screw-caps), although with varying degrees of weathering. It is noteworthy that the presence of a clarifying additive in PP formulation did not seem to impact the release of MPs from the containers. The study showed that PP TJC containers released more MPs than PET bottles. Finally, the size of MPs was measured to determine their fate upon ingestion and highlights the need for further studies to understand the safety of these plastic containers for SODIS.
Collapse
Affiliation(s)
- Carmen Álvarez-Fernández
- Chemical and Environmental Engineering Group. Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Elina Matikainen
- Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Kevin G McGuigan
- Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Jose M Andrade
- Group of Applied Analytical Chemistry. University of A Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - Javier Marugán
- Chemical and Environmental Engineering Group. Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain; Instituto de Tecnologías para la Sostenibilidad, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| |
Collapse
|
3
|
Lin YD, Huang PH, Chen YW, Hsieh CW, Tain YL, Lee BH, Hou CY, Shih MK. Sources, Degradation, Ingestion and Effects of Microplastics on Humans: A Review. TOXICS 2023; 11:747. [PMID: 37755757 PMCID: PMC10534390 DOI: 10.3390/toxics11090747] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Celluloid, the predecessor to plastic, was synthesized in 1869, and due to technological advancements, plastic products appear to be ubiquitous in daily life. The massive production, rampant usage, and inadequate disposal of plastic products have led to severe environmental pollution. Consequently, reducing the employment of plastic has emerged as a pressing concern for governments globally. This review explores microplastics, including their origins, absorption, and harmful effects on the environment and humans. Several methods exist for breaking down plastics, including thermal, mechanical, light, catalytic, and biological processes. Despite these methods, microplastics (MPs, between 1 and 5 mm in size) continue to be produced during degradation. Acknowledging the significant threat that MPs pose to the environment and human health is imperative. This form of pollution is pervasive in the air and food and infiltrates our bodies through ingestion, inhalation, or skin contact. It is essential to assess the potential hazards that MPs can introduce. There is evidence suggesting that MPs may have negative impacts on different areas of human health. These include the respiratory, gastrointestinal, immune, nervous, and reproductive systems, the liver and organs, the skin, and even the placenta and placental barrier. It is encouraging to see that most of the countries have taken steps to regulate plastic particles. These measures aim to reduce plastic usage, which is essential today. At the same time, this review summarizes the degradation mechanism of plastics, their impact on human health, and plastic reduction policies worldwide. It provides valuable information for future research on MPs and regulatory development.
Collapse
Affiliation(s)
- Yan-Duan Lin
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-D.L.); (C.-Y.H.)
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No.4, Meicheng Road, Higher Education Park, Huai’an 223003, China;
| | - Yu-Wei Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 60004, Taiwan;
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-D.L.); (C.-Y.H.)
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan
| |
Collapse
|
4
|
Liu J, Zhu B, An L, Ding J, Xu Y. Atmospheric microfibers dominated by natural and regenerated cellulosic fibers: Explanations from the textile engineering perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120771. [PMID: 36455767 DOI: 10.1016/j.envpol.2022.120771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
A large number of synthetic fibers found in the environment have aroused public conern about microfiber pollution. However, more studies have found that the number of natural fibers and regenerated cellulose fibers in the environment is much higher than that of synthetic fibers. If humans are exposed to excessive amounts of these two types of fibers for a long time, they may also suffer physiological injury. However, this is often ignored by previous research on microfiber pollution. Recently, some publications attributed the dominating amounts of natural fiber and regenerated cellulosic fibers in the environment to the past yield advantage and low durability compared to synthetic fibers. This correspondence supports that view and further discusses the main reasons for the domination of natural and regenerated cellulosic fibers: their physicochemical properties, material sources, manufacturing processes (staple yarn and filament) and applications. This correspondence aims to arouse attention to the potential impact of natural fibers and regenerated cellulose fibers.
Collapse
Affiliation(s)
- Jianli Liu
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214021, China.
| | - Bo Zhu
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214021, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuyao Xu
- School of Geographical Sciences, Faculty of Sciences and Engineering, University of Nottingham, Ningbo, China, Ningbo, 315100, China; Institute of Urban Environment, Ningbo Station, Chinese Academy of Sciences, Ningbo, 315800, China
| |
Collapse
|
5
|
Chen Q, Wang Q, Zhang C, Zhang J, Dong Z, Xu Q. Aging simulation of thin-film plastics in different environments to examine the formation of microplastic. WATER RESEARCH 2021; 202:117462. [PMID: 34343870 DOI: 10.1016/j.watres.2021.117462] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 05/05/2023]
Abstract
Microplastics have received considerable attention in recent years. Understanding the aging mechanism of plastics in different environments (land, fresh water, estuary, and ocean) is critical to control the microplastic formation. Therefore, the aging process of plastics, including polyethylene (PE) and polypropylene (PP), in different environments was simulated by analyzing their physical and chemical structures by using the Raman spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy techniques. After 23 weeks, micro-scale microplastics (size less than 100 μm) could be extracted from the plastic surface through smashing waves in all fresh water and seawater samples. However, complete fragmentation was observed only in the case of thin-film plastics (TFPs, thickness of approximately 10 μm). This phenomenon indicated that TFPs disintegrated to microplastics more easily in the water system than on land, and the water flow notably affected the production of micro-scale particles. Furthermore, ultraviolet radiation affected the chemical structure of plastics through a two-stage process in all environments. In the initial stage, chemical aging occurred in the amorphous regions of both PE and PP, leading to the generation of newly functional groups such as C=O at 1717 cm-1, and a reduced contact angle. In the later stage, PE exhibited additional crystals and increased contact angles, whereas PP demonstrated the tendency of producing oxygen-containing functional groups that could reduce the crystallinity. In addition, several inorganic salts (such as sulfate and phosphorus) in seawater likely combined with C-H-type stretches, thereby promoting the chemical aging of plastics.
Collapse
Affiliation(s)
- Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, China
| | - Qian Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, China
| | - Chao Zhang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, China
| | - Jiawen Zhang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, China
| | - Zihang Dong
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, China.
| |
Collapse
|
6
|
Mitrano DM, Wick P, Nowack B. Placing nanoplastics in the context of global plastic pollution. NATURE NANOTECHNOLOGY 2021; 16:491-500. [PMID: 33927363 DOI: 10.1038/s41565-021-00888-2] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/03/2021] [Indexed: 05/13/2023]
Abstract
Numerous studies have made the ubiquitous presence of plastic in the environment undeniable, and thus it no longer comes as a surprise when scientists measure the accumulation of macroplastic litter and microplastic fragments in both urban and remote sites. Nanoplastics have recently emerged in the discussions of scientists, regulators and the public, as the weathering of macroplastics may lead to a substantial burden of nanoplastics in various ecosystems. While nanoplastics particles themselves have not (yet) been extensively measured in the environment, there is increased concern that this size fraction of plastic may be more extensively distributed and hazardous that larger-sized particles. This assessment may emanate from an unease with the term 'nano', which may elicit a negative response over uncertainties of the pervasiveness of nanoplastics specifically, or from the lessons learned by many years of intensive environmental health and safety research of engineered nanomaterials. Ultimately, the different physical and chemical characteristics of the different size classes of plastic pollution (macroplastics, microplastics and nanoplastics) will result in divergent fate and hazards. As nanoscientists specializing in understanding the fate, transport and interactions of nanoparticles in human and environmental systems, in this Perspective, we try to place nanoplastics in the context of global plastic pollution by assessing its sources and risks, and by assessing commonalities nanoplastics may share with other nanosized objects in environmental systems, such as engineered nanomaterials and natural colloids.
Collapse
Affiliation(s)
- Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.
| | - Peter Wick
- Particles-Biology Interactions Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Bernd Nowack
- Technology and Society Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
7
|
Thiele CJ, Hudson MD. Uncertainty about the risks associated with microplastics among lay and topic-experienced respondents. Sci Rep 2021; 11:7155. [PMID: 33785822 PMCID: PMC8009892 DOI: 10.1038/s41598-021-86569-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Microplastics are contaminants of emerging concern but there is currently a lack of evidence on actual risks relating to them, despite claims in media and scientific articles. Research on people’s perceptions on microplastics is in its infancy. Here we present part of a larger survey about people’s perceptions of issues with microplastics. Our analysis of 1681 responses across the globe to an online questionnaire demonstrates a certain level of uncertainty, not only in lay people but also respondents who study/work on the topic of plastics and microplastics as a pollutant. This uncertainty ranges from level of concern about microplastics as an environmental issue to existing evidence for effects. Further, there is some discrepancy between risk perception and state of the research. Some of this may be driven by scientific work with some serious limitations in reporting and methods. This highlights the need for fact-checking of circulating information about microplastics, but also for addressing the discordance between ecotoxicological risk and how risk is framed within the scientific community.
Collapse
Affiliation(s)
- Christina J Thiele
- Centre for Environmental Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Malcolm D Hudson
- Centre for Environmental Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| |
Collapse
|