Dang Q, Zhao X, Xi B, Zhang C, He L. The key role of denitrification and dissimilatory nitrate reduction in nitrogen pollution along vertical landfill profiles from metagenomic perspective.
JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023;
342:118300. [PMID:
37263034 DOI:
10.1016/j.jenvman.2023.118300]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/03/2023]
Abstract
Landfill are persistent sources of nitrogen (N) pollution even in the decades after closure. However, the biological pathways of N-pollution, particularly N2O and NH4+, at different landfill depths have received little attention. In this study, metagenomic analysis was conducted on landfill refuse from vertical reservoir profiles in two closed landfills named XT and MT. NH4+ concentrations were found to be higher in deeper layers of MT, while greater potential for N2O emissions occurred in XT and the shallow layers of MT. Furthermore, the community structure and function of N-metabolizing microbes were more strongly defined by landfill depth than landfill type. Denitrification, involving abundant nirK and norB genes, was identified as the major pathway for N2O production in both XT and MT-shallow, while dissimilatory nitrate reduction with abundant nirBD genes was identified as the major pathway for NH4+ accumulation. Microbes of norB-type and nirBD-type were positively affected by NO3- in XT, whereas negatively affected by contents of organic material and moisture in MT-shallow. The mechanism by which nitrogen fixation, with abundant nifH genes, contributes to NH4+ accumulation in MT-deep should be further elucidated. These findings can provide a theoretical basis for governing scientific N-pollution control strategies throughout the entire landfill process.
Collapse