1
|
Wei D, Zeng K, Yang J, Xu R, Deng C, Li M, Zhu N, Zhao H, Zhang Z. Luminescent Metal-Organic Framework-Based Fluorescent Sensor Array for Screening and Discrimination of Bisphenols. Inorg Chem 2024; 63:18763-18773. [PMID: 39308126 DOI: 10.1021/acs.inorgchem.4c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Extensive applications of bisphenols in industrial products have led to their release into aquatic environments, causing a great threat to human health due to their endocrine-disrupting effects, whereas existing methods are difficult to implement the rapid and high-throughput detection of multiple bisphenols. To circumvent this issue, we constructed a sensor array using two luminescent metal-organic frameworks (LMOFs) (Zr-BUT-12 and Ga-MIL-61) for the rapid discrimination of six bisphenol contaminants (BPA, BPS, BPB, BPF, BPAF, and TBBPA). Wherein, Zr-BUT-12 and Ga-MIL-61 exhibited different fluorescence-emission properties and good luminescent stability. Interestingly, bisphenols with different structures had diverse quenching effects on the fluorescence intensity of Zr-BUT-12 and Ga-MIL-61 via the adsorptive interaction, resulting in unique fluorescent fingerprints. Based on pattern recognition methods, different bisphenols were successfully identified, with the limit of detection in the range of 1.59-16.7 ng/mL for six bisphenols. More importantly, the developed sensor array could be effectively utilized for distinguishing different ratios of mixed bisphenols, which was further applied for bisphenol discrimination in real water samples. Consequently, our finding provides a promising strategy for the simultaneous recognition of multiple bisphenols, which encourages the development of a sensor array for the detection of multiple contaminants in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Dali Wei
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kun Zeng
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiumei Yang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rongfei Xu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chunmeng Deng
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mengfan Li
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Zhao
- Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Zhen Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Cao XL, Popovic S, Gill S. Development and Validation of a GC-MS Method Based on Solid-Phase Extraction and Derivatization for Analysis of Free and Glucuronide-Conjugated Bisphenol F in Biological Samples. J AOAC Int 2024; 107:785-789. [PMID: 39018177 DOI: 10.1093/jaoacint/qsae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND As one of the speculated bisphenols to replace bisphenol A (BPA), bisphenol F (BPF), naturally present in mustard, is structurally similar to BPA and may have similar estrogenic activity, but information on its toxicity is very limited compared to BPA. OBJECTIVE In order to support the toxicology study of BPF at Heath Canada, a GC-MS method based on solid-phase extraction (SPE) and derivatization was developed for analysis of BPF in liver samples. METHODS Samples were treated with β-glucuronidase to convert BPF glucuronide to free BPF for analysis of total BPF. RESULTS The method was validated for free BPF at different spiking levels, and recoveries ranged from 90-97.5% with RSDs from 0.11-5.54%. The method was also validated for glucuronide-conjugated BPF at different spiking levels of BPF mono-β-D-glucuronide: recoveries ranged from 72.3-93.3% with RSDs from 1.7-8.94%. The method was used to analyze 60 liver tissue samples from rats dosed with BPF at different levels in a toxicology study. Free and glucuronide-conjugated BPF were not detected in any of the control samples, which were not dosed with BPF (average method detection limit: 0.31 ng/g) but detected in all the other liver tissue samples with levels increasing at higher doses. The percentage of glucuronide-conjugated BPF in total BPF varied among the liver samples, from as low as 9.8% to as high as 77.9%, indicating the importance of analyzing biological samples for BPF in both free and conjugated forms for total exposure. CONCLUSION A GC-MS method based on solid-phase extraction (SPE) and derivatization was developed for analysis of both free and glucuronide-conjugated BPF in liver samples. This method was validated not only for free BPF, but also for mono-β-D-glucuronide-conjugated BPF for the first time to confirm the efficiency of the deconjugation procedure with enzyme. HIGHLIGHTS This method can be adapted and applied for analysis of free and glucuronide-conjugated BPF in other biological samples with appropriate validation in target sample matrixes.
Collapse
Affiliation(s)
- Xu-Liang Cao
- Food Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Svetlana Popovic
- Food Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Santokh Gill
- Regulatory Toxicology Division, Bureau of Chemical Safety, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
3
|
Tagne-Fotso R, Riou M, Saoudi A, Zeghnoun A, Frederiksen H, Berman T, Montazeri P, Andersson AM, Rodriguez-Martin L, Akesson A, Berglund M, Biot P, Castaño A, Charles MA, Cocco E, Den Hond E, Dewolf MC, Esteban-Lopez M, Gilles L, Govarts E, Guignard C, Gutleb AC, Hartmann C, Kold Jensen T, Koppen G, Kosjek T, Lambrechts N, McEachan R, Sakhi AK, Snoj Tratnik J, Uhl M, Urquiza J, Vafeiadi M, Van Nieuwenhuyse A, Vrijheid M, Weber T, Zaros C, Tarroja-Aulina E, Knudsen LE, Covaci A, Barouki R, Kolossa-Gehring M, Schoeters G, Denys S, Fillol C, Rambaud L. Exposure to bisphenol A in European women from 2007 to 2014 using human biomonitoring data - The European Joint Programme HBM4EU. ENVIRONMENT INTERNATIONAL 2024; 190:108912. [PMID: 39116556 DOI: 10.1016/j.envint.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bisphenol A (BPA; or 4,4'-isopropylidenediphenol) is an endocrine disrupting chemical. It was widely used in a variety of plastic-based manufactured products for several years. The European Food Safety Authority (EFSA) recently reduced the Tolerable Daily Intake (TDI) for BPA by 20,000 times due to concerns about immune-toxicity. OBJECTIVE We used human biomonitoring (HBM) data to investigate the general level of BPA exposure from 2007 to 2014 of European women aged 18-73 years (n = 4,226) and its determinants. METHODS Fifteen studies from 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Luxembourg, Slovenia, Spain, Sweden, and the United Kingdom) were included in the BPA Study protocol developed within the European Joint Programme HBM4EU. Seventy variables related to the BPA exposure were collected through a rigorous post-harmonization process. Linear mixed regression models were used to investigate the determinants of total urine BPA in the combined population. RESULTS Total BPA was quantified in 85-100 % of women in 14 out of 15 contributing studies. Only the Austrian PBAT study (Western Europe), which had a limit of quantification 2.5 to 25-fold higher than the other studies (LOQ=2.5 µg/L), found total BPA in less than 5 % of the urine samples analyzed. The geometric mean (GM) of total urine BPA ranged from 0.77 to 2.47 µg/L among the contributing studies. The lowest GM of total BPA was observed in France (Western Europe) from the ELFE subset (GM=0.77 µg/L (0.98 µg/g creatinine), n = 1741), and the highest levels were found in Belgium (Western Europe) and Greece (Southern Europe), from DEMOCOPHES (GM=2.47 µg/L (2.26 µg/g creatinine), n = 129) and HELIX-RHEA (GM=2.47 µg/L (2.44 µg/g creatinine), n = 194) subsets, respectively. One hundred percent of women in 14 out of 15 data collections in this study exceeded the health-based human biomonitoring guidance value for the general population (HBM-GVGenPop) of 0.0115 µg total BPA/L urine derived from the updated EFSA's BPA TDI. Variables related to the measurement of total urine BPA and those related to the main socio-demographic characteristics (age, height, weight, education, smoking status) were collected in almost all studies, while several variables related to BPA exposure factors were not gathered in most of the original studies (consumption of beverages contained in plastic bottles, consumption of canned food or beverages, consumption of food in contact with plastic packaging, use of plastic film or plastic containers for food, having a plastic floor covering in the house, use of thermal paper…). No clear determinants of total urine BPA concentrations among European women were found. A broader range of data planned for collection in the original questionnaires of the contributing studies would have resulted in a more thorough investigation of the determinants of BPA exposure in European women. CONCLUSION This study highlights the urgent need for action to further reduce exposure to BPA to protect the population, as is already the case in the European Union. The study also underscores the importance of pre-harmonizing HBM design and data for producing comparable data and interpretable results at a European-wide level, and to increase HBM uptake by regulatory agencies.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Abdessattar Saoudi
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Abdelkrim Zeghnoun
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem, Israel
| | - Parisa Montazeri
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Agneta Akesson
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Pierre Biot
- Federal Public Service Health, Food Chain Safety and Environment, Brussels, Belgium
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marie-Aline Charles
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France; Inserm UMR 1153, Centre for Research in Epidemiology and Statistics (CRESS), Team Early Life Research on Later Health, University of Paris, Villejuif, France
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Elly Den Hond
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - Marta Esteban-Lopez
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Cedric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | | | - Tina Kold Jensen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark (SDU), Odense, Denmark
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Tina Kosjek
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Nathalie Lambrechts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Janja Snoj Tratnik
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Maria Uhl
- German Environment Agency (UBA), Berlin, Germany
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - An Van Nieuwenhuyse
- Department Health Protection, Laboratoire national de santé (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Till Weber
- German Environment Agency (UBA), Berlin, Germany
| | - Cécile Zaros
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France
| | | | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | - Robert Barouki
- Inserm UMR S-1124, University of Paris, T3S, Paris, France; Biochemistry, Metabolomics, and Proteomics Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sebastien Denys
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Clemence Fillol
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| |
Collapse
|
4
|
Wu S, Liu S, Wang Z, Chen Y, Zhao G. Comprehensive analysis of bisphenol analogues in complex water using a group-targeting aptamer engineered by base mutation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132427. [PMID: 37672991 DOI: 10.1016/j.jhazmat.2023.132427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Bisphenol analogues (BPs) are typical environmental hormones with endocrine-disrupting effects and reproductive toxicity requiring analysis and monitoring in complex aquatic environments. However, the presence of various co-existing contaminants makes the accurate determination of total BPs difficult. To address this challenge, there is a strong need to obtain a group-targeting binder to specifically detect a class of BPs. In this work, for the first time we have identified the group-targeting BPs-aptamer with similar affinities for multiple structurally and qualitatively similar BPs. Base mutations were introduced into an aptamer specific to bisphenol A (BPA) and utilized molecular docking calculations to identify a group-targeting aptamer capable of binding BPs, including BPA, bisphenol B (BPB), bisphenol E (BPE) and bisphenol F (BPF) with binding constants in the range of 2.0 × 106 ∼ 2.7 × 106 / M. In addition, an electrochemical aptamer-based sensor (aptasensor) was constructed for highly sensitive and comprehensive analysis of a class of BPs. This aptasensor demonstrated remarkable anti-interference performance against co-existing contaminants at concentrations up to 100-fold and achieved an impressive detection limit of 6.7 pM. This innovative approach of engineering a group-targeting BPs-aptamer is important for the comprehensive analysis of BPs, providing insights into identification and monitoring a class of pollutants.
Collapse
Affiliation(s)
- Siqi Wu
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China
| | - Siyao Liu
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China
| | - Zhiming Wang
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China.
| |
Collapse
|
5
|
Borghese MM, Huang R, MacPherson S, Gaudreau E, Gagné S, Ashley-Martin J, Fisher M, Booij L, Bouchard MF, Arbuckle TE. A descriptive analysis of first trimester urinary concentrations of 14 bisphenol analogues in the MIREC Canadian pregnancy cohort. Int J Hyg Environ Health 2023; 253:114225. [PMID: 37542835 DOI: 10.1016/j.ijheh.2023.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Concern over the health effects of BPA, particularly for the developing fetus, has led to an increasing use of bisphenol analogues in industrial and consumer products, which may be as hormonally active as BPA. Biomonitoring data for many bisphenol analogues, especially in pregnant populations, are limited. METHODS We measured concentrations of 14 bisphenol analogues in 1st trimester urine samples (n = 1851) from the Maternal-Infant Research on Environmental Chemicals (MIREC) Canadian pregnancy cohort (2008-2011). We examined patterns of exposure according to sociodemographic and sampling characteristics as well as occupation and frequency of consumption of canned fish within the previous 3 months. RESULTS BPA was detected in 89% of participants with a specific gravity standardized geometric mean concentration of 0.990 μg/L. Biphenol 4,4' (BP 4,4'), 4,4'-dihydroxydiphenyl ether (DHDPE), and bisphenol E (BPE) were detected in >97% of participants. Bisphenol F (BPF) and bisphenol S (BPS) were detected in >60% of participants. Specific gravity standardized geometric mean concentrations of these 5 compounds ranged from 0.024 to 0.564 μg/L. Nine bisphenol analogues were detected in <9% of participants. Concentrations of BP 4,4', DHDPE, and BPE were higher in younger women and those with higher pre-pregnancy BMI, lower household income, lower education, and among smokers. We found a similar pattern of differences in BPF for age, education, and smoking status while BPS similarly differed across categories of pre-pregnancy BMI. Participants who were unemployed or working in the service industry had higher molar sum of 7 bisphenol analogues than those working in healthcare, education, or an office setting. Canned fish consumption was not related to bisphenol analogue concentrations. CONCLUSION BP 4,4', DHDPE, BPE, BPF, and BPS were highly detected in 1st trimester urine samples in this large pan-Canadian pregnancy cohort. This suggests widespread exposure to these analogues around 2008-2011 and warrants further investigation into associations with health outcomes.
Collapse
Affiliation(s)
- M M Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - R Huang
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - S MacPherson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - E Gaudreau
- Centre du Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Quebec, Canada.
| | - S Gagné
- Centre du Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Quebec, Canada.
| | - J Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - M Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - L Booij
- Department of Psychiatry, McGill University, Montréal, Québec, Canada; Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada; Department of Environmental and Occupational Health, School of Public Health of the University of Montreal, Montréal, Québec, Canada.
| | - M F Bouchard
- Department of Environmental and Occupational Health, School of Public Health of the University of Montreal, Montréal, Québec, Canada.
| | - T E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Milić N, Milanović M, Drljača J, Sudji J, Milošević N. Challenges in the Analytical Preparation of a Biological Matrix in Analyses of Endocrine-Disrupting Bisphenols. SEPARATIONS 2023; 10:226. [DOI: 10.3390/separations10040226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are xenobiotics presented in a variety of everyday products that may disrupt the normal activity of hormones. Exposure to bisphenol A as EDC at trace and ultra-trace levels is associated with adverse health effects, and children are recognized as the most vulnerable group to EDCs exposure. In this review, a summary is presented of up-to-date sample preparation methods and instrumental techniques applied for the detection and quantification of bisphenol A and its structural analogues in various biological matrices. Biological matrices such as blood, cell-free blood products, urine, saliva, breast milk, cordial blood, amniotic and semen fluids, as well as sweat and hair, are very complex; therefore, the detection and later quantification of bisphenols at low levels present a real analytical challenge. The most popular analytical approaches include gas and liquid chromatography coupled with mass spectrometry, and their enhanced reliability and sensitivity finally allow the separation and detection of bisphenols in biological samples, even as ultra-traces. Liquid/liquid extraction (LLE) and solid-phase extraction (SPE) are still the most common methods for their extraction from biological matrices. However, many modern and environmentally safe microextraction techniques are currently under development. The complexity of biological matrices and low concentrations of analytes are the main issues for the limited identification, as well as understanding the adverse health effects caused by chronical and ubiquitous exposure to bisphenols and its analogues.
Collapse
Affiliation(s)
- Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Jovana Drljača
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Jan Sudji
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
7
|
Bowman BA, Ejzak EA, Reese CM, Blount BC, Bhandari D. Mitigating Matrix Effects in LC-ESI-MS-MS Analysis of a Urinary Biomarker of Xylenes Exposure. J Anal Toxicol 2023; 47:129-135. [PMID: 35766875 PMCID: PMC10949524 DOI: 10.1093/jat/bkac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022] Open
Abstract
Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) with stable isotope-labeled internal standards (SIL-ISs) is the gold standard for quantitative analysis of drugs and metabolites in complex biological samples. Significant isotopic effects associated with deuterium labeling often cause the deuterated IS to elute at a different retention time from the target analyte, diminishing its capability to compensate for matrix effects. In this study, we systematically compared the analytical performance of deuterated (2H) SIL-IS to non-deuterated (13C and 15N) SIL-ISs for quantifying urinary 2-methylhippuric acid (2MHA) and 4-methylhippuric acid (4MHA), biomarkers of xylenes exposure, with an LC-ESI-MS-MS assay. Analytical method comparison between ISs demonstrated a quantitative bias for urinary 2MHA results, with concentrations generated with 2MHA-[2H7] on average 59.2% lower than concentrations generated with 2MHA-[13C6]. Spike accuracy, measured by quantifying the analyte-spiked urine matrix and comparing the result to the known spike concentration, determined that 2MHA-[2H7] generated negatively biased urinary results of -38.4%, whereas no significant bias was observed for 2MHA-[13C6]. Post-column infusion demonstrated that ion suppression experienced by 2MHA and 2MHA-[13C6] was not equally experienced by 2MHA-[2H7], explaining the negatively biased 2MHA results. The quantitation of urinary 4MHA results between ISs exhibited no significant quantitative bias. These results underscore the importance of the careful selection of ISs for targeted quantitative analysis in complex biological samples.
Collapse
Affiliation(s)
- Brett A. Bowman
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
- Life Sciences Research, Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA
| | - Elizabeth A. Ejzak
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
- Life Sciences Research, Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA
| | - Christopher M. Reese
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - Benjamin C. Blount
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - Deepak Bhandari
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| |
Collapse
|
8
|
Zhou J, Chen XH, Zhang DD, Jin MC, Zhuang L, Du Y. Determination of multiple bisphenol analogues and their metabolites in human serum by liquid chromatography tandem mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120092. [PMID: 36064063 DOI: 10.1016/j.envpol.2022.120092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
To date, knowledge of internal human exposure to BPA and its analogues (particularly bisphenol S and bisphenol F, etc.) remains limited. In the present study, a method involving dispersive solid-phase extraction and LC/MS was proposed to investigate the contamination levels of 28 precursor bisphenols and 9 major metabolites in serum. The critical variables of preparation method were screened out by Plackett-Burman design and further optimized by central composite design. Left in optimal conditions, a total of 286 samples consisting of 153 males and 133 females were analyzed. The results showed that BPA dominated over all the cases with the highest positive rate (82.2% of all the surveyed people), and totally four metabolites (BPA β-D-glucuronide, BPA monosulfate, BPA bis-(β-D-glucuronide) and BPS monosulfate) were detectable. The occurrence of BPA bis-(β-D-glucuronide) in serum is reported for the first time and its higher positive rate and contamination concentrations suggested that it may be a more important metabolite of BPA than others. Negligible potential risk of health effects to blood donors was observed, since the estimated exposure levels (mean 32.1 ng/kg bw/day, 95th 123.2 ng/kg bw/day) were well below far less than the temporary tolerable reference dose of BPA that recommended by the European Food Safety Authority (4 μg/kg bw/day by). The reference level of BPA for healthy population was determined to be 4.09 μg/L via the percentile method.
Collapse
Affiliation(s)
- Jian Zhou
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China.
| | - Xiao-Hong Chen
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Dan-Dan Zhang
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Mi-Cong Jin
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Li Zhuang
- Ningbo Municipal Center Blood Station, Ningbo Blood Management Center, Ningbo, 315010, China
| | - Yong Du
- Ningbo Municipal Center Blood Station, Ningbo Blood Management Center, Ningbo, 315010, China
| |
Collapse
|
9
|
Khataee A, Sohrabi H, Ehsani M, Agaei M, Sisi AJ, Abdi J, Yoon Y. State-of-the-art progress of metal-organic framework-based electrochemical and optical sensing platforms for determination of bisphenol A as an endocrine disruptor. ENVIRONMENTAL RESEARCH 2022; 212:113536. [PMID: 35661731 DOI: 10.1016/j.envres.2022.113536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/07/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Considering the low concentration levels of bisphenol compounds present in environmental, food, and biological samples, and the difficulty in analyzing the matrices, the main challenge is with the cleanup and extraction process, as well as developing highly sensitive determination methods. Recent advances in the field of metal-organic frameworks (MOFs) due to their large surface area, low weight, and other extraordinary physical, chemical, and mechanical features have made these porous materials a crucial agent in developing biosensing assays. This review focuses on MOFs across their definition, structural features, various types, synthetic routes, and their significant utilization in sensing assays for bisphenol A (BPA) determination. Additionally, recent improvements in characteristics and physio-chemical features of MOFs and their functional applications in developing electrochemical and optical sensing assays via different recognition elements for detecting BPA are comprehensively discussed. Finally, the existing boundaries of the current advances including future challenges concerning successful construction of sensing approaches by employing functionalized MOFs are addressed.
Collapse
Affiliation(s)
- Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Maryam Ehsani
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Mahdiyeh Agaei
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Abdollah Jamal Sisi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Jafar Abdi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, 3619995161, Shahrood, Iran
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
10
|
Xu Z, Yu S, Mo W, Tang Y, Cheng Y, Ding L, Chen M, Peng S. Facile and Sensitive Method for Detecting Bisphenol A UsingUbiquitous pH Meters. ChemistrySelect 2022. [DOI: 10.1002/slct.202202002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhou Xu
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
| | - ShaoYi Yu
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
| | - WeiXi Mo
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
| | - Yao Tang
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
| | - Yunhui Cheng
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
- School of Food Science and Engineering Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Li Ding
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
| | - Maolong Chen
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
| | - Shuang Peng
- Hunan Provincial Key Laboratory of Cytochemistry School of Food Science and Bioengineering Changsha University of Science & Technology Changsha 410114 China
- College of Chemistry and Chemical Engineering Hunan University Changsha 410082 Hunan China
| |
Collapse
|
11
|
Improved method for the determination of endocrine-disrupting chemicals in urine of school-age children using microliquid-liquid extraction and UHPLC-MS/MS. Anal Bioanal Chem 2022; 414:6681-6694. [PMID: 35879427 DOI: 10.1007/s00216-022-04231-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/01/2022]
Abstract
The presence of endocrine-disrupting chemicals in our daily life is increasing every day and, by extension, human exposure and the consequences thereof. Among these substances are bisphenols and parabens. Urine is used to analyze the exposure. The determination of 12 bisphenol homologues and 6 parabens is proposed. A procedure based on a method previously developed by our research group in 2014 is improved. The extraction yield is higher, because the new protocol is 5 times more efficient. Also, a comparison between calibration with pure standards and matrix calibration, to calculate the matrix effect, was also made. A high grade of matrix effect for all analytes was observed. In terms of validation, the limits of detection (LOD) were between 0.03 and 0.3 ng mL-1 and limits of quantification (LOQ) 0.1 to 1.0 ng mL-1, respectively, and the recovery is higher than 86.4% and lower than 113.6%, with a RSD lower than 13.5% in all cases. A methodology for accurate and sensitive quantification of bisphenol homologues together with parabens in human urine using UHPLC-MS/MS was developed. The method was successfully applied to 30 urine samples from children.
Collapse
|
12
|
BPA exposure aggravates necroptosis of myocardial tissue in selenium deficient broilers through NO-dependent endoplasmic reticulum stress. Toxicology 2022; 472:153190. [DOI: 10.1016/j.tox.2022.153190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|
13
|
A Rapid Detection Method for Tomato Gray Mold Spores in Greenhouse Based on Microfluidic Chip Enrichment and Lens-Less Diffraction Image Processing. Foods 2021; 10:foods10123011. [PMID: 34945562 PMCID: PMC8701817 DOI: 10.3390/foods10123011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/24/2023] Open
Abstract
It is of great significance to find tomato gray mold in time and take corresponding control measures to ensure the production of tomato crops. This study proposed a rapid detection method for spores of Botrytis cinerea in green-house based on microfluidic chip enrichment and lens-free diffraction image processing. Microfluidic chip with a regular triangular inner rib structure was designed to achieve the enrichment of Botrytis cinerea spores. In order to obtain the diffraction image of the diseased spores, a lens-less diffraction imaging system was built. Furthermore, the collected spore diffraction images were processed and counted. The simulation results showed that the collection efficiency of 16 μm particles was 79%, 100%, and 89% at the inlet flow rate of 12, 14 and 16 mL/min, respectively. The experimental verification results were observed under a microscope. The results showed that when the flow rate of the microfluidic chip was 12, 14 and 16 mL/min, the collection efficiency of Botrytis cinerea spores was 70.65%, 87.52% and 77.96%, respectively. The Botrytis cinerea spores collected in the experiment were placed under a microscope for manual counting and compared with the automatic counting results based on diffraction image processing. A total of 10 sets of experiments were carried out, with an error range of the experiment was 5.13~8.57%, and the average error of the experiment was 6.42%. The Bland–Altman method was used to analyze two methods based on diffraction image processing and manual counting under a microscope. All points are within the 95% consistency interval. Therefore, this study can provide a basis for the research on the real-time monitoring technology of tomato gray mold spores in the greenhouse.
Collapse
|