1
|
Shang Y, Fu C, Zhang W, Li X, Li X. Groundwater hydrochemistry, source identification and health assessment based on self-organizing map in an intensive mining area in Shanxi, China. ENVIRONMENTAL RESEARCH 2024; 252:118934. [PMID: 38653438 DOI: 10.1016/j.envres.2024.118934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
The Changzhi Basin in Shanxi is renowned for its extensive mining activities. It's crucial to comprehend the spatial distribution and geochemical factors influencing its water quality to uphold water security and safeguard the ecosystem. However, the complexity inherent in hydrogeochemical data presents challenges for linear data analysis methods. This study utilizes a combined approach of self-organizing maps (SOM) and K-means clustering to investigate the hydrogeochemical sources of shallow groundwater in the Changzhi Basin and the associated human health risks. The results showed that the groundwater chemical characteristics were categorized into 48 neurons grouped into six clusters (C1-C6) representing different groundwater types with different contamination characteristics. C1, C3, and C5 represent uncontaminated or minimally contaminated groundwater (Ca-HCO3 type), while C2 signifies mixed-contaminated groundwater (HCO3-Ca type, Mixed Cl-Mg-Ca type, and CaSO4 type). C4 samples exhibit impacts from agricultural activities (Mixed Cl-Mg-Ca), and C6 reflects high Ca and NO3- groundwater. Anthropogenic activities, especially agriculture, have resulted in elevated NO3- levels in shallow groundwater. Notably, heightened non-carcinogenic risks linked to NO3-, Pb, F-, and Mn exposure through drinking water, particularly impacting children, warrant significant attention. This research contributes valuable insights into sustainable groundwater resource development, pollution mitigation strategies, and effective ecosystem protection within intensive mining regions like the Changzhi Basin. It serves as a vital reference for similar areas worldwide, offering guidance for groundwater management, pollution prevention, and control.
Collapse
Affiliation(s)
- Yajie Shang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Changchang Fu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang, 050061, China.
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Xiang Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Xiangquan Li
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang, 050061, China
| |
Collapse
|
2
|
Dao PU, Heuzard AG, Le TXH, Zhao J, Yin R, Shang C, Fan C. The impacts of climate change on groundwater quality: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169241. [PMID: 38072271 DOI: 10.1016/j.scitotenv.2023.169241] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Groundwater has been known as the second largest freshwater storage in the world, following surface water. Over the years, groundwater has already been under overwhelming pressure to satisfy human needs for artificial activities around the world. Meanwhile, the most noticeable footprint of human activities is the impact of climate change. Climate change has the potential to change the physical and chemical properties of groundwater, thereby affecting its ecological functions. This study summarizes existing research affiliated with the possible effects of a changing climate on the quality of groundwater, including changes in water availability, increased salinity and pollution from extreme weather events, and the potentiality of seawater intrusion into coastal aquifers. Previous works dealing with groundwater-induced responses to the climate system and climate impacts on groundwater quality through natural and anthropogenic processes have been reviewed. The climate-induced changes in groundwater quality including pH, dissolved oxygen level, salinity, and concentrations of organic and inorganic compounds were assessed. Some future research directions are proposed, including exploring the potential changes in the occurrences and fate of micropollutants in groundwater, examining the relationship between the increase of microcystin in groundwater and climate change, studying the changes in the stability of metals and metal complexation, and completing studies across different regional climate regions.
Collapse
Affiliation(s)
- Phuong Uyen Dao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Arnaud Guillaume Heuzard
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Thi Xuan Hoa Le
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chihhao Fan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Han C, Du S, Zhang W, Zhang D, Wen Z, Chai J, Zhao K, Sun S. Exploration of optimal disinfection model based on groundwater risk assessment in disinfection process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115107. [PMID: 37290298 DOI: 10.1016/j.ecoenv.2023.115107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Under the influence of different types of disinfectants and disinfection environments, the removal level of pathogens and the formation potential of disinfection by-products (DBPs) will have a dual impact on the groundwater environment. The key points for sustainable groundwater safety management are how to balance the positive and negative relationship and formulate a scientific disinfection model in combination with risk assessment. In this study, the effects of sodium hypochlorite (NaClO) and peracetic acid (PAA) concentrations on pathogenic E. coli and DBPs were investigated using static-batch and dynamic-column experiments, as well as the optimal disinfection model for groundwater risk assessment was explored using quantitative microbial risk assessment and disability-adjusted life years (DALYs) models. Compared to static disinfection, deposition and adsorption were the dominant factors causing E. coli migration at lower NaClO levels of 0-0.25 mg/L under dynamic state, while disinfection was its migration factor at higher NaClO levels of 0.5-6.5 mg/L. In contrast, E. coli removed by PAA was the result of the combined action of deposition, adsorption, and disinfection. The disinfection effects of NaClO and PAA on E. coli differed under dynamic and static conditions. At the same NaClO level, the health risk associated with E. coli in groundwater was higher, whereas, under the same PAA conditions, the health risk was lower. Under dynamic conditions, the optimal disinfectant dosage required for NaClO and PAA to reach the same acceptable risk level was 2 and 0.85 times (irrigation) or 0.92 times (drinking) of static disinfection, respectively. The results may help prevent the misuse of disinfectants and provide theoretical support for managing twin health risks posed by pathogens and DBPs in water treatment.
Collapse
Affiliation(s)
- Cuihong Han
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of Construction Engineering, Jilin University, Changchun 130021, China
| | - Shanghai Du
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of Construction Engineering, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Zong Wen
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Juanfen Chai
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Kaichao Zhao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Simiao Sun
- School of Geography, Earth and Environmental Sciences, University of Birmingham, UK
| |
Collapse
|