1
|
Liu B, Yang T, Kang S, Wang F, Zhang H, Xu M, Wang W, Bai J, Song S, Dai Q, Feng Y, Hopke PK. Changes in factor profiles deriving from photochemical losses of volatile organic compounds: Insight from daytime and nighttime positive matrix factorization analyses. J Environ Sci (China) 2025; 151:627-639. [PMID: 39481968 DOI: 10.1016/j.jes.2024.04.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 11/03/2024]
Abstract
Substantial effects of photochemical reaction losses of volatile organic compounds (VOCs) on factor profiles can be investigated by comparing the differences between daytime and nighttime dispersion-normalized VOC data resolved profiles. Hourly speciated VOC data measured in Shijiazhuang, China from May to September 2021 were used to conduct study. The mean VOC concentration in the daytime and at nighttime were 32.8 and 36.0 ppbv, respectively. Alkanes and aromatics concentrations in the daytime (12.9 and 3.08 ppbv) were lower than nighttime (15.5 and 3.63 ppbv), whereas that of alkenes showed the opposite tendency. The concentration differences between daytime and nighttime for alkynes and halogenated hydrocarbons were uniformly small. The reactivities of the dominant species in factor profiles for gasoline emissions, natural gas and diesel vehicles, and liquefied petroleum gas were relatively low and their profiles were less affected by photochemical losses. Photochemical losses produced a substantial impact on the profiles of solvent use, petrochemical industry emissions, combustion sources, and biogenic emissions where the dominant species in these factor profiles had high reactivities. Although the profile of biogenic emissions was substantially affected by photochemical loss of isoprene, the low emissions at nighttime also had an important impact on its profile. Chemical losses of highly active VOC species substantially reduced their concentrations in apportioned factor profiles. This study results were consistent with the analytical results obtained through initial concentration estimation, suggesting that the initial concentration estimation could be the most effective currently available method for the source analyses of active VOCs although with uncertainty.
Collapse
Affiliation(s)
- Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| | - Tao Yang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Sicong Kang
- Beijing Make Environment Science & Technology Co., Ltd., Beijing 100083, China
| | - Fuquan Wang
- Beijing Make Environment Science & Technology Co., Ltd., Beijing 100083, China
| | - Haixu Zhang
- Beijing Make Environment Science & Technology Co., Ltd., Beijing 100083, China
| | - Man Xu
- Shijiazhuang Environmental Prediction Center, Shijiazhuang 050022, China
| | - Wei Wang
- Shijiazhuang Environmental Prediction Center, Shijiazhuang 050022, China
| | - Jinrui Bai
- Shijiazhuang Environmental Prediction Center, Shijiazhuang 050022, China
| | - Shaojie Song
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
2
|
Liu Z, Xu W, Zhu S, Zhang X, Xu N, Wang S, Zhang K, Wang M, Fat Nicky LY, Li L. Elucidating ozone formation mechanisms in the central Yangtze River Delta region, China: Urban and rural differences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125979. [PMID: 40049278 DOI: 10.1016/j.envpol.2025.125979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/25/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Surface ozone (O3) pollution has become a pressing air quality issue in eastern China in recent years. However, studies comparing O3 formation in urban and rural areas remain limited. This study presents a field campaign focusing on volatile organic compounds (VOCs) conducted at two sites in the central Yangtze River Delta (YRD) region during the warm season (June to August) of 2023. VOC pollution sources identified through positive matrix factorization (PMF) were integrated into a machine learning framework, along with nitrogen dioxide (NO2) and meteorological factors, to quantify their impacts on O3 formation. The results show that urban areas have higher VOC concentrations, primarily driven by elevated levels of aromatics and oxygenated volatile organic compounds (OVOCs), compared to rural areas. PMF analysis identified six major VOC sources: industrial emissions, paint and solvent usage, biogenic emissions, combustion-related emissions, mobile sources, and liquefied petroleum gas usage. Mobile sources and industrial emissions are more significant in urban areas, while combustion-related emissions are more significant in rural areas. The machine learning model effectively captured the relationships between meteorological parameters, precursors, and O3 levels. Analysis revealed that meteorological factors are the primary drivers of O3 formation in rural areas, whereas both meteorological factors and precursors contribute equally in urban areas. Relative humidity and combustion source emerged as the most influential factors at both sites, though the significance of other factors varied due to environmental differences. These findings enhance our understanding of O3 pollution differences between urban and rural regions. The combined effects of meteorological factors, NO2, and VOCs should be taken into account when formulating O3 pollution control policies.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Jiangsu Changhuan Environment Technology Co., Ltd., Changzhou, 213002, China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wenlong Xu
- Jiangsu Changhuan Environment Technology Co., Ltd., Changzhou, 213002, China
| | - Shengnan Zhu
- Jiangsu Changhuan Environment Technology Co., Ltd., Changzhou, 213002, China
| | - Xin Zhang
- Chinese Academy of Environmental Planning, Beijing, 100041, China
| | - Nan Xu
- Jiangsu Changhuan Environment Technology Co., Ltd., Changzhou, 213002, China
| | - Siqi Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Kun Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ming Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Lam Yun Fat Nicky
- Department of Geography, The University of Hong Kong, Hong Kong, China
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
Zhang H, Zhang C, Liu S, Yin S, Zhang S, Zhu H, Yan F, Yang H, Ru X, Liu X. Insights into the source characterization, risk assessment and ozone formation sensitivity of ambient VOCs at an urban site in the Fenwei Plain, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136721. [PMID: 39637802 DOI: 10.1016/j.jhazmat.2024.136721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The ground-level O3 concentration has shown a deteriorating trend in the Fenwei Plain of China, which poses a greater challenge for formulating control strategies of O3 precursor (VOCs). To accurately control VOCs sources and effectively reduce O3 concentration from a seasonal perspective, online monitoring of 114 VOCs was conducted at Yuncheng Middle School Station from January 1, 2021 to December 31, 2021. The VOCs concentration showed a seasonal variation with the highest in winter and the lowest in summer. During the four seasons, alkanes (34.5-41.7 %) and OVOCs (36.6-46.9 %) were the most abundant species. The emission ratios of specific VOCs species indicated that vehicular exhaust, industrial source, and combustion were the major VOCs sources. The Positive Matrix Factorization (PMF) model identified that industrial source and secondary conversion were the main contributors in summer, while combustion and LPG/NG contributed more significantly in winter. The 2021-based VOCs emission inventory showed that the total VOCs emissions in the central urban area of Yuncheng was 8128.8 t, in which industrial process was the largest contributor. Alkanes, aromatics, and OVOCs accounted for 31.0 %, 25.8 %, and 25.7 % of the annual VOCs emission, respectively. In addition, the calculated relative incremental reactivity (RIR) values of O3 precursors demonstrated that alkenes and aromatics were the most sensitive groups to O3 formation during the four seasons. The ambient VOCs posed the non-carcinogenic risk across all seasons, which can be attributed to acrolein and three main sources (industrial source, secondary conversion, and combustion). However, ambient VOCs exposed to definite carcinogenic risks due to the appearance of 1,2-dichloroethane, 1,2-dichloropropane, and benzene, and the main risks arose from industrial source, vehicular exhaust, and solvent usage. These findings emphasize the necessity of undertaking scientific and systematic measures for priority species and control sources of VOCs emission.
Collapse
Affiliation(s)
- Huan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chen Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shasha Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shijie Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Siqing Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hongji Zhu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Fengyu Yan
- Yuncheng Municipal Ecological Environment Bureau, Yuncheng 044000, China
| | - Hua Yang
- Yuncheng Municipal Ecological Environment Bureau, Yuncheng 044000, China
| | - Xiaoning Ru
- Yuncheng Municipal Ecological Environment Bureau, Yuncheng 044000, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Cui Y, Liu B, Yang Y, Kang S, Wang F, Xu M, Wang W, Feng Y, Hopke PK. Primary and oxidative source analyses of consumed VOCs in the atmosphere. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134894. [PMID: 38909463 DOI: 10.1016/j.jhazmat.2024.134894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
Consumed VOCs are the compounds that have reacted to form ozone and secondary organic aerosol (SOA) in the atmosphere. An approach that can apportion the contributions of primary sources and reactions to the consumed VOCs was developed in this study and applied to hourly VOCs data from June to August 2022 measured in Shijiazhuang, China. The results showed that petrochemical industries (36.9 % and 51.7 %) and oxidation formation (20.6 % and 35.6 %) provided the largest contributions to consumed VOCs and OVOCs during the study period, whereas natural gas (5.0 % and 7.6 %) and the mixed source of liquefied petroleum gas and solvent use (3.1 % and 4.2 %) had the relatively low contributions. Compared to the non-O3 pollution (NOP) period, the contributions of oxidation formation, petrochemical industries, and the mixed source of gas evaporation and vehicle emissions to the consumed VOCs during the O3 pollution (OP) period increased by 2.8, 3.8, and 9.3 times, respectively. The differences in contributions of liquified petroleum gas and solvent use, natural gas, and combustion sources to consumed VOCs between OP and NOP periods were relatively small. Transport of petrochemical industries emissions from the southeast to the study site was the primary consumed pathway for VOCs emitted from petrochemical industries.
Collapse
Affiliation(s)
- Yaqi Cui
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| | - Yufeng Yang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Sicong Kang
- Beijing Make Environment Science & Technology Co., Ltd., Beijing 100083, China
| | - Fuquan Wang
- Beijing Make Environment Science & Technology Co., Ltd., Beijing 100083, China
| | - Man Xu
- Shijiazhuang Environmental Prediction Center, Shijiazhuang 050022, China
| | - Wei Wang
- Shijiazhuang Environmental Prediction Center, Shijiazhuang 050022, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
5
|
Sun J, Yu X, Ling Z, Fang G, Ming L, Zhao J, Zou S, Guan H, Wang H, Wang X, Wang Z, Gao Y, Tham YJ, Guo H, Zhang Y. Roles of photochemical consumption of VOCs on regional background O 3 concentration and atmospheric reactivity over the pearl river estuary, Southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172321. [PMID: 38604373 DOI: 10.1016/j.scitotenv.2024.172321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Understanding of the photochemical ozone (O3) pollution over the Pearl River Estuary (PRE) of southern China remains limited. We performed an in-depth analysis of volatile organic compounds (VOCs) data collected on an island (i.e., the Da Wan Shan Island, DWS) located at the downwind of Pearl River Delta (PRD) from 26 November to 15 December 2021. Abundances of O3 and its precursors were measured when the air masses originated from the inland PRD. We observed that the VOCs levels at the DWS site were lower, while the mixing ratio of O3 was higher, compared to those reported at inland PRD, indicating the occurrence of photochemical consumption of VOCs during the air masses transport, which was further confirmed by the composition and diurnal variations of VOCs, as well as ratios of specific VOCs. The simulation results from a photochemical box model showed that the O3 level in the outflow air masses of inland PRD (O3(out-flow)) was the dominant factor leading to the intensification of O3 pollution and the enhancement of atmospheric radical concentrations (ARC) over PRE, which was mainly contributed by the O3 production via photochemical consumption of VOCs during air masses transport. Overall, our findings provided direct quantitative evidence for the roles of outflow O3 and its precursors from inland PRD on O3 abundance and ARC over the PRE area, highlighting that alleviation of O3 pollution over PRE should focus on the impact of photochemical loss of VOCs in the outflow air masses from inland PRD.
Collapse
Affiliation(s)
- Jiayin Sun
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiaoyu Yu
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Zhenhao Ling
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Guizhen Fang
- School of Marine Sciences, Sun Yat-sen University, and Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, China
| | - Lili Ming
- Technical Center of Gongbei Customs District of China, Zhuhai, China
| | - Jun Zhao
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, and Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, China
| | - Huatian Guan
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Haichao Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xuemei Wang
- College of Environment and Climate, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuan Gao
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai, China
| | - Yee Jun Tham
- School of Marine Sciences, Sun Yat-sen University, and Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, China.
| | - Hai Guo
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Yanli Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
6
|
Farhat M, Afif C, Zhang S, Dusanter S, Delbarre H, Riffault V, Sauvage S, Borbon A. Investigating the industrial origin of terpenoids in a coastal city in northern France: A source apportionment combining anthropogenic, biogenic, and oxygenated VOC. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172098. [PMID: 38582124 DOI: 10.1016/j.scitotenv.2024.172098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Terpenoids have long been known to originate from natural sources. However, there is growing evidence for emissions from anthropogenic activities in cities, in particular from the production, manufacturing, and use of household solvents. Here, as part of the DATAbASE (Do Anthropogenic Terpenoids mAtter in AtmoSpheric chEmistry?) project, we investigate for the first time the potential role of industrial activities on the terpenoid burden in the urban atmosphere. This study is based on continuous VOC observations from an intensive field campaign conducted in July 2014 at an industrial-urban background site located in Dunkirk, Northern France. More than 80 VOCs including oxygenated and terpenoid compounds were measured by on-line Thermal Desorption Gas Chromatography with a Flame Ionization Detection (TD-GC-FID) and Proton Transfer Reaction-Time of Flight Mass Spectrometry (PTR-ToFMS). Isoprene, α-pinene, limonene and the sum of monoterpenes were the terpenoids detected at average mixing ratios of 0.02 ± 0.02 ppbv, 0.02 ± 0.02 ppbv, 0.01 ± 0.01 ppbv and 0.03 ± 0.05 ppbv, respectively. Like other anthropogenic VOCs, the mixing ratios of terpenoids significantly increase downwind the industrial plumes by one order of magnitude. Positive Matrix Factorization (PMF) was performed to identify the different emission sources of VOCs and their contribution. Six factors out of the eight factors extracted (r2 = 0.95) are related to industrial emissions such as solvent use, chemical and agrochemical storage, metallurgy, petrochemical, and coal-fired industrial activities. From the correlations between the industrial-type PMF factors, sulfur dioxide, and terpenoids, we determined their emissions ratios and we quantified for the first time their industrial emissions. The highest emission ratio is related to the alkene-dominated factor and is related to petrochemical, metallurgical and coal-fired industrial activities. The industrial emissions of monoterpenes equal 8.1 ± 4.3 tons/year. Those emissions are as significant as the non-industrialized anthropogenic ones estimated for the Paris megacity.
Collapse
Affiliation(s)
- Mariana Farhat
- Université Clermont Auvergne, Laboratoire de Météorologie Physique, OPGC/CNRS UMR 6016, Clermont-Ferrand, France; EMMA Research Group, Center for Analysis and Research, Faculty of Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon.
| | - Charbel Afif
- EMMA Research Group, Center for Analysis and Research, Faculty of Sciences, Université Saint-Joseph de Beyrouth, Beirut, Lebanon; Climate & Atmosphere Research Centre (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Shouwen Zhang
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France; Laboratoire de Physico-Chimie de l'Atmosphère, ULCO, Dunkerque, France
| | - Sébastien Dusanter
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - Hervé Delbarre
- Laboratoire de Physico-Chimie de l'Atmosphère, ULCO, Dunkerque, France
| | - Véronique Riffault
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - Stéphane Sauvage
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - Agnès Borbon
- Université Clermont Auvergne, Laboratoire de Météorologie Physique, OPGC/CNRS UMR 6016, Clermont-Ferrand, France.
| |
Collapse
|
7
|
Wang R, Wang L, Yang Y, Zhan J, Ji D, Hu B, Ling Z, Xue M, Zhao S, Yao D, Liu Y, Wang Y. Comparative analysis for the impacts of VOC subgroups and atmospheric oxidation capacity on O 3 based on different observation-based methods at a suburban site in the North China Plain. ENVIRONMENTAL RESEARCH 2024; 248:118250. [PMID: 38244964 DOI: 10.1016/j.envres.2024.118250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The persistent O3 pollution in the Beijing-Tianjin-Hebei (BTH) region remains unresolved, largely due to limited comprehension of O3-precursor relationship and photochemistry drivers. In this work, intraday O3 sensitivity evolution from VOC-limited (volatile organic compound) regime in the forenoon to transition regime in the late afternoon was inferred by relative incremental reactivity (RIR) in summer 2019 at Xianghe, a suburban site in BTH region, suggesting that VOC-focused control policy could combine with stringent afternoon NOx control. Then detailed impacts of VOC subgroups on O3 formation were further comprehensively quantified by parametric OH reactivity (KOH), O3 formation potential (OFP), as well as RIR weighted value and O3 formation path tracing (OFPT) approach based on photochemical box model. O3 episode days corresponded to stronger O3 formation, depicted by higher KOH (10.4 s-1), OFP (331.7 μg m-3), RIR weighted value (1.2), and F(O3)-OFPT (15.5 ppbv h-1). High proportions of isoprene and OVOCs (oxygenated VOCs) to the total KOH and the OFPT method were demonstrated whereas results of OFP and RIR-weighted presented extra great impacts of aromatics on O3 formation. The OFPT approach captured the process that has already happened and included final O3 response to the original VOC, thus reliable for replicating VOC impacts. The comparison results of the four methods showed similarities when utilizing KOH and OFPT methods, which reveals that the potential applicability of simple KOH for contingency VOC control and more complex OFPT method for detailed VOC- and source-oriented control during policy-making. To investigate propulsion of VOC-involved O3 photochemistry, atmospheric oxidation capacity (AOC) was quantified by two atmospheric oxidation indexes (AOI). Both AOIp_G (7.0 × 107 molec cm-3 s-1, potential AOC calculated by oxidation reaction rates) and AOIe_G (8.5 μmol m-3, estimated AOC given redox electron transfer for oxidation products) were stronger on O3 episode days, indicating that AOC promoted the radical cycling initiated from VOC oxidation and subsequent O3 production. Result-oriented AOIe_G reasonably characterized actual AOC inferred by good linear correlation between AOIe_G and O3 concentrations compared to process-oriented AOIp_G. Therefore, with continuous NOx abatement, AOIe_G should be considered to represent actual AOC, also O3-inducing ability.
Collapse
Affiliation(s)
- Runyu Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yuan Yang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Junlei Zhan
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Bo Hu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Zhenhao Ling
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Min Xue
- State Key Laboratory of Severe Weather & China Meteorological Administration Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Shuman Zhao
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, China
| | - Dan Yao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang, 453007, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang, 453007, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Zhang L, Xu T, Wu G, Zhang C, Li Y, Wang H, Gong D, Li Q, Wang B. Photochemical loss with consequential underestimation in active VOCs and corresponding secondary pollutions in a petrochemical refinery, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170613. [PMID: 38307286 DOI: 10.1016/j.scitotenv.2024.170613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The photochemical loss of volatile organic compounds (VOCs) significantly alters the capturing source profiles in high-reactivity VOC species and results in an underestimation of secondary pollutants such as ozone (O3) and secondary organic aerosol (SOA). Utilising speciated VOC data from large petrochemical refineries, the research assesses the photochemical loss of various VOC species. Air samples from multiple sites revealed over 99 VOCs, with initial concentrations estimated via a photochemical age-based parameterisation method. The comparative analysis of initial and measured VOC values provided insights into the VOCs' photochemical degradation during transport. Findings highlight that the average photochemical loss of total VOCs (TVOCs) across different refinery process areas varied between 4.9 and 506.8 ppb, averaging 187.5 ± 128.7 ppb. Alkenes dominated the consumed VOCs at 83.1 %, followed by aromatic hydrocarbons (9.3 %), alkanes (6.1 %), and oxygenated VOCs (OVOCs) at 1.6 %. The average consumption-based ozone formation potential (OFP) and SOA formation potential (SOAP) were calculated at 1767.3 ± 1251.1 ppb and 2959.6 ± 2386.3 ppb, respectively. Alkenes, primarily isoprene, 1,3-butadiene, and acetylene, were the most significant contributors to OFP, ranging from 19.9 % to 95.5 %. Aromatic hydrocarbons, predominantly monocyclic aromatics like toluene, xylene, styrene, and n-dodecane, were the primary contributors to SOAP, accounting for 5.0 % to 81.3 %. This research underscores the significance of considering photochemical losses in VOCs for accurate secondary pollution assessment, particularly in high-reactivity VOC species. It also provides new detection methods and accurate data for the characterization, source analysis and chemical conversion of volatile organic compounds in the petroleum refining industry.
Collapse
Affiliation(s)
- Lili Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China
| | - Tong Xu
- Cambridge Centre for Environment, Energy and Natural Resource Governance, Department of Land Economy, University of Cambridge, Cambridge, UK.
| | - Gengchen Wu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China
| | - Chengliang Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China.
| | - Yang Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China
| | - Daocheng Gong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China
| | - Qinqin Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou, China.
| |
Collapse
|
9
|
Zuo H, Jiang Y, Yuan J, Wang Z, Zhang P, Guo C, Wang Z, Chen Y, Wen Q, Wei Y, Li X. Pollution characteristics and source differences of VOCs before and after COVID-19 in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167694. [PMID: 37832670 DOI: 10.1016/j.scitotenv.2023.167694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
During the outbreak of the COVID-19, the change in the way of people's living and production provided the opportunity to study the influence of human activity on Volatile organic compounds (VOCs) in the atmosphere. Therefore, this study analyzed VOCs concentration and composition characteristics in urban area of Beijing from 2019 to 2020. The results showed that the concentration of VOCs in Chaoyang district in 2020 was 73.1ppbv, lower than that in 2019 (92.8ppbv), and alkanes (45 % and 47 %) were the most dominant components. The concentrations of isopentane, n-pentane, n-hexane, and OVOCs significantly increased in 2020. According to the results of the PMF model, the contribution of VOCs from vehicle and pharmaceutical-related emissions increased to 45.8 % and 27.1 % in 2020, while coal combustion decreased by 23.7 %. This is likely linked to the strict implementation of the coal conversion policy, as well as the increment in individual travel and pharmaceutical production during the pandemic. The calculation results of OFP and SOAFP indicated that toluene had an increased impact on the formation of O3 and SOA in the Chaoyang district in 2020. Notably, VOCs emitted by vehicles have the highest potential for secondary generation. In addition, VOCs from vehicles and industries pose the greatest health risks, together accounting for 77.4 % and 79.31 % of the total carcinogenic risk in 2019 and 2020. Although industrial emission with the high proportions of halocarbons was controlled to some extent during the pandemic, the carcinogenic risk in 2020 was 3.74 × 10-6, which still exceeded the acceptable level, and more attention and governance efforts should be given to.
Collapse
Affiliation(s)
- Hanfei Zuo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Yuchun Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Ziqi Wang
- College of Arts and Sciences, University of Cincinnati, Cincinnati, State of Ohio 45221, USA
| | - Puzhen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ye Chen
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Qing Wen
- School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150006, China.
| |
Collapse
|
10
|
Zou Y, Yan XL, Flores RM, Zhang LY, Yang SP, Fan LY, Deng T, Deng XJ, Ye DQ. Source apportionment and ozone formation mechanism of VOCs considering photochemical loss in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166191. [PMID: 37567293 DOI: 10.1016/j.scitotenv.2023.166191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Understanding the sources and impact of volatile organic compounds (VOCs) on ozone formation is challenging when the traditional method does not account for their photochemical loss. In this study, online monitoring of 56 VOCs was carried out in summer and autumn during high ozone pollution episodes. The photochemical age method was used to evaluate the atmospheric chemical loss of VOCs and to analyze the effects on characteristics, sources, and ozone formation of VOC components. The initial concentrations during daytime were 5.12 ppbv and 4.49 ppbv higher than the observed concentrations in the summer and autumn, respectively. The positive matrix factorization (PMF) model identified 5 major emission sources. However, the omission of the chemical loss of VOCs led to underestimating the contributions of sources associated with highly reactive VOC components, such as those produced by biogenic emissions and solvent usage. Conversely it resulted in overestimating the contributions from VOC components with lower chemical activity such as liquefied petroleum gas (LPG) usage, vehicle emissions, and gasoline evaporation. Furthermore, the estimation of ozone formation may be underestimated when the atmospheric photochemical loss is not taken into account. The ozone formation potential (OFP) method and propylene-equivalent concentration method both underestimated ozone formation by 53.24 ppbv and 47.25 ppbc, respectively, in the summer, and by 40.34 ppbv and 26.37 ppbc, respectively, in the autumn. The determination of the ozone formation regime based on VOC chemical loss was more acceptable. In the summer, the ozone formation regime changed from the VOC-limited regime to the VOC-NOx transition regime, while in the autumn, the ozone formation regime changed from the strong VOC-limited regime to the weak VOC-limited regime. To obtain more thorough and precise conclusions, further monitoring and analysis studies will be conducted in the near future on a wider variety of VOC species such as oxygenated VOCs (OVOCs).
Collapse
Affiliation(s)
- Y Zou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Institute of Tropical and Marine Meteorology, China Meteorological Administration (CMA), Guangzhou 510640, China
| | - X L Yan
- State Key Laboratory of Severe Weather & Institute of Tibetan Plateau Meteorology, Chinese Academy of Meteorological Sciences, Beijing, China
| | - R M Flores
- Marmara University, Department of Environmental Engineering, Istanbul, Turkey
| | - L Y Zhang
- Institute of Tropical and Marine Meteorology, China Meteorological Administration (CMA), Guangzhou 510640, China
| | - S P Yang
- Institute of Tropical and Marine Meteorology, China Meteorological Administration (CMA), Guangzhou 510640, China
| | - L Y Fan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - T Deng
- Institute of Tropical and Marine Meteorology, China Meteorological Administration (CMA), Guangzhou 510640, China
| | - X J Deng
- Institute of Tropical and Marine Meteorology, China Meteorological Administration (CMA), Guangzhou 510640, China
| | - D Q Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
11
|
Liu Z, Wang B, Wang C, Sun Y, Zhu C, Sun L, Yang N, Fan G, Sun X, Xia Z, Pan G, Zhu C, Gai Y, Wang X, Xiao Y, Yan G, Xu C. Characterization of photochemical losses of volatile organic compounds and their implications for ozone formation potential and source apportionment during summer in suburban Jinan, China. ENVIRONMENTAL RESEARCH 2023; 238:117158. [PMID: 37726031 DOI: 10.1016/j.envres.2023.117158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Volatile organic compounds (VOCs) undergo substantial photochemical losses during their transport from emission sources to receptor sites, resulting in serious implications for their source apportionment and ozone (O3) formation. Based on the continuous measurements of VOCs in suburban Jinan in August 2022, the effects of photochemical losses on VOC source contributions and O3 formation were evaluated in this study. The observed and initial concentrations of total VOCs (TVOC) were 12.0 ± 5.1 and 16.0 ± 7.4 ppbv, respectively. Throughout the observation period, alkenes had the most prominent photochemical losses (58.2%), followed by aromatic hydrocarbons (23.1%), accounting for 80.6% and 6.9% of the total losses, respectively. During high O3 episodes, the photochemical loss of VOCs was 6.9 times higher than that during the cleaning period. Alkene losses (exceeding 67.3%), specifically losses of isoprene, propylene, ethylene, and n-butene, dominated the total losses of VOCs during the O3 increase period. Eight sources of VOCs were identified by positive matrix factorization (PMF) based on the observed and initial concentration data (OC-PMF and IC-PMF, respectively). Concentrations of all emission sources in the OC-PMF were underestimated by 2.4%-57.1%. Moreover, the contribution of each emission source was over- or underestimated compared with that in case of the IC-PMF. The contributions of biogenic and motor vehicle exhaust emissions were underestimated by 5.3 and 2.8 percentage points, respectively, which was associated with substantial oxidation of the emitted high-reactive species. The contributions of coal/biomass burning and natural gas were overestimated by 2.4 and 3.9 percentage points, respectively, which were related to the emission of low-reactive species (acetylene, ethane, and propane). Based on our results, the photochemical losses of VOCs grossly affect their source apportionment and O3 formation. Thus, photochemical losses of VOCs must be thoroughly accounted to establish a precise scientific foundation for air-pollution control strategies.
Collapse
Affiliation(s)
- Zhenguo Liu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Baolin Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Chen Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Yuchun Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Chuanyong Zhu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Lei Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Na Yang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guolan Fan
- Jinan Eco-environmental Monitoring Center of Shandong Province, Jinan, 250101, China
| | - Xiaoyan Sun
- Jinan Eco-environmental Monitoring Center of Shandong Province, Jinan, 250101, China
| | - Zhiyong Xia
- Jinan Eco-environmental Monitoring Center of Shandong Province, Jinan, 250101, China
| | - Guang Pan
- Jinan Eco-environmental Monitoring Center of Shandong Province, Jinan, 250101, China
| | - Changtong Zhu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yichao Gai
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiaoyu Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yang Xiao
- Zibo Eco-environmental Monitoring Center of Shandong Province, Zibo, 255000, China
| | - Guihuan Yan
- Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Chongqing Xu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China; Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
12
|
Hui L, Feng X, Yuan Q, Chen Y, Xu Y, Zheng P, Lee S, Wang Z. Abundant oxygenated volatile organic compounds and their contribution to photochemical pollution in subtropical Hong Kong. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122287. [PMID: 37562529 DOI: 10.1016/j.envpol.2023.122287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
Volatile organic compounds (VOCs), which are ubiquitous pollutants in the urban and regional atmosphere, promote the formation of ozone (O3) and secondary organic aerosols, thereby significantly affecting the air quality and human health. The ambient VOCs at a coastal suburban site in Hong Kong were continuously measured using proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) from November 2020 to December 2020. 83 VOC species, including 23 CxHy, 53 CxHyO1-3, and 7 nitrogen-containing species, were measured during the campaign, with a mean concentration of 36.75 ppb. Oxygenated VOCs (OVOCs) accounted for most (77.4%) of the measured species, including CxHyO1 (50.7%) and CxHyO2 (25.1%). The measured VOC species exhibited distinct temporal and diurnal variations. High concentrations of isoprene and OVOCs were measured in autumn with more active photochemistry, whereas large evening peaks of aromatics from local and regional primary emissions were prominent in winter. The OH reactivity and O3 formation potential (OFP) of key precursors were quantified. OVOCs contributed about half of the total OH reactivity and OFP, followed by alkenes and aromatics, and the contribution of aromatics increased significantly in winter. The potential source contribution function was used to investigate the potential source regions associated with high VOC concentrations. Through positive matrix factorization analysis, six major sources were identified based on fingerprint molecules. The contributions of biogenic sources and secondary formation to the observed species were notable in late autumn, whereas vehicle emissions and solid fuel combustion had higher contributions in winter. The findings highlight the important role of OVOCs in photochemical pollution and provide valuable insights for the development of effective pollution control strategies.
Collapse
Affiliation(s)
- Lirong Hui
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Xin Feng
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Qi Yuan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yi Chen
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Yang Xu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Penggang Zheng
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Shuncheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China.
| |
Collapse
|
13
|
Chen ZW, Ting YC, Huang CH, Ciou ZJ. Sources-oriented contributions to ozone and secondary organic aerosol formation potential based on initial VOCs in an urban area of Eastern Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164392. [PMID: 37244610 DOI: 10.1016/j.scitotenv.2023.164392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Over the past decades, the pollution of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere has become a major concern worldwide due to their adverse effects on human health, air quality and climate. Volatile organic compounds (VOCs) are crucial precursors of O3 and SOA, but identifying the primary sources of VOCs that contribute to the formation of O3 and SOA has been challenging due to the rapid consumption of VOCs by oxidants in the air. To address this issue, a study was conducted in a Taipei urban area in Taiwan, where the hourly data of 54 VOC species were collected from March 2020 to February 2021 detected by Photochemical Assessment Monitoring Stations (PAMS). The initial mixing ratios of VOCs (VOCsini) were determined by combining the observed VOCs (VOCsobs) and the consumed VOCs resulting from photochemical reactions. Additionally, the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) were estimated based on VOCsini. The OFP derived from VOCsini (OFPini) was found to exhibit a strong correlation with O3 mixing ratios (R2 = 0.82), whereas the OFP obtained from VOCsobs did not show such a correlation. Isoprene, toluene and m,p-xylene were the top three species contributing to OFPini, while toluene and m,p-xylene were the top two contributors to SOAFPini. Positive matrix factorization analysis revealed that biogenic, consumer/household products, and industrial solvents were the major contributors to OFPini in four seasons, and SOAFPini mostly came from consumer/household products and industrial solvents. This study highlights the importance of considering photochemical loss caused by different VOCs reactivity in the atmosphere when evaluating OFP and SOAFP. Moreover, it emphasizes the need to prioritize controlling the sources emitting the dominant VOC precursors of O3 and SOA to effectively alleviate the scenarios of elevated O3 and particulate matter.
Collapse
Affiliation(s)
- Zih-Wun Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Chieh Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chuan-Hsiu Huang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Zih-Jhe Ciou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Mishra M, Chen PH, Bisquera W, Lin GY, Le TC, Dejchanchaiwong R, Tekasakul P, Jhang CW, Wu CJ, Tsai CJ. Source-apportionment and spatial distribution analysis of VOCs and their role in ozone formation using machine learning in central-west Taiwan. ENVIRONMENTAL RESEARCH 2023:116329. [PMID: 37276975 DOI: 10.1016/j.envres.2023.116329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
This study assessed the machine learning based sensitivity analysis coupled with source-apportionment of volatile organic carbons (VOCs) to look into new insights of O3 pollution in Yunlin County located in central-west region of Taiwan. One-year (Jan 1 to Dec 31, 2021) hourly mass concentrations data of 54 VOCs, NOX, and O3 from 10 photochemical assessment monitoring stations (PAMs) in and around the Yunlin County were analyzed. The novelty of the study lies in the utilization of artificial neural network (ANN) to evaluate the contribution of VOCs sources in O3 pollution in the region. Firstly, the station specific source-apportionment of VOCs were carried out using positive matrix factorization (PMF)-resolving six sources viz. AAM: aged air mass, CM: chemical manufacturing, IC: Industrial combustion, PP: petrochemical plants, SU: solvent use and VE: vehicular emissions. AAM, SU, and VE constituted cumulatively more than 65% of the total emission of VOCs across all 10 PAMs. Diurnal and spatial variability of source-segregated VOCs showed large variations across 10 PAMs, suggesting for distinctly different impact of contributing sources, photo-chemical reactivity, and/or dispersion due to land-sea breezes at the monitoring stations. Secondly, to understand the contribution of controllable factors governing the O3 pollution, the output of VOCs source-contributions from PMF model along with mass concentrations of NOX were standardized and first time used as input variables to ANN, a supervised machine learning algorithm. ANN analysis revealed following order of sensitivity in factors governing the O3 pollution: VOCs from IC > AAM > VE ≈ CM ≈ SU > PP ≈ NOX. The results indicated that VOCs associated with IC (VOCs-IC) being the most sensitive factor which need to be regulated more efficiently to quickly mitigate the O3 pollution across the Yunlin County.
Collapse
Affiliation(s)
- Manisha Mishra
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
| | - Pin-Hsin Chen
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Wilfredo Bisquera
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Guan-Yu Lin
- Department of Environmental Science and Engineering, Tunghai University, Taichung, 407302, Taiwan.
| | - Thi-Cuc Le
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Racha Dejchanchaiwong
- Air Pollution and Health Effect Research Center, And Department of Chemical Engineering, Prince of Songkla University, Songkhla, 90100, Thailand
| | - Perapong Tekasakul
- Air Pollution and Health Effect Research Center, And Department of Mechanical and Mechatronics Engineering, Prince of Songkla University, Songkhla, 90100, Thailand
| | | | - Ci-Jhen Wu
- Environmental Protection Bureau, Yunlin County, Taiwan
| | - Chuen-Jinn Tsai
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
15
|
Qin Z, Xu B, Zheng Z, Li L, Zhang G, Li S, Geng C, Bai Z, Yang W. Integrating ambient carbonyl compounds provides insight into the constrained ozone formation chemistry in Zibo city of the North China Plain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121294. [PMID: 36796669 DOI: 10.1016/j.envpol.2023.121294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Quantifying the impact of carbonyl compounds (carbonyls) on ozone (O3) photochemical formation is crucial to formulating targeted O3 mitigation strategies. To investigate the emission source of ambient carbonyls and their integrated observational constraint on the impact of O3 formation chemistry, a field campaign was conducted in an industrial city (Zibo) of the North China Plain from August to September 2020. The site-to-site variations of OH reactivity for carbonyls were in accordance with the sequence of Beijiao (BJ, urban, 4.4 s-1) > Xindian (XD, suburban, 4.2 s-1) > Tianzhen (TZ, suburban, 1.6 s-1). A 0-D box model (MCMv3.3.1) was applied to assess the O3-precursor relationship influenced by measured carbonyls. It was found that without carbonyls constraint, the O3 photochemical production of the three sites was underestimated to varying degrees, and the biases of overestimating the VOC-limited degree were also identified through a sensitivity test to NOx emission changes, which may be associated with the reactivity of carbonyls. In addition, the results of the positive matrix factorization (PMF) model indicated that the main source of aldehydes and ketones was secondary formation and background (81.6% for aldehydes, 76.8% for ketones), followed by traffic emission (11.0% for aldehydes, 14.0% for ketones). Incorporated with the box model, we found that biogenic emission contributed the most to the O3 production at the three sites, followed by traffic emission as well as industry and solvent usage. Meanwhile, the relative incremental reactivity (RIR) values of O3 precursor groups from diverse VOC emission sources featured consistencies and differences at the three sites, which further highlights the importance of the synergetic mitigation of target O3 precursors at regional and local scales. This study will help to provide targeted policy-guiding O3 control strategies for other regions.
Collapse
Affiliation(s)
- Ze Qin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bo Xu
- Shandong Zibo Eco-Environmental Monitoring Center, Zibo, 255040, China
| | - Zhensen Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liming Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guotao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shijie Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chunmei Geng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
16
|
Liu Z, Zha F, Wang Y, Yuan B, Liu B, Tang G. Vertical evolution of the concentrations and sources of volatile organic compounds in the lower boundary layer in urban Beijing in summer. CHEMOSPHERE 2023; 332:138767. [PMID: 37105313 DOI: 10.1016/j.chemosphere.2023.138767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/08/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Exploring the vertical variations in volatile organic compounds (VOCs) in the atmosphere and quantifying the sources of VOCs at different heights can help control atmospheric photochemical pollution in summer. Here, VOCs were vertically detected at three heights (47 m, 200 m and 320 m) along a 325 m tower of the Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, in the mornings (8:00) and afternoons (15:00) from May 19 to June 18, 2021. The VOC concentrations in Beijing in summer were 16.2 ± 5.6 ppbv, 14.7 ± 2.5 ppbv and 14.9 ± 3.8 ppbv at 47 m, 200 m and 320 m, respectively, and alkanes accounted for the largest proportion at all heights (>56%). The vertical gradients of the VOC concentrations and components did not significantly change, which was consistent with the summer observations of other stations in North China in recent years, but these results significantly differed from observations from more than a decade ago. To determine the reason for this, a classification based on atmospheric stability was performed, revealing that the vertical distribution of VOCs was uniform in convective and stable conditions and decreased with increasing height in neutral condition. With the transition of atmospheric stability from neutral to convective to stable, the contributions of fuel combustion sources and solvent use sources gradually increased, while those of biogenic sources and background sources gradually decreased. With increasing height, the contributions of background sources increased, those of biogenic sources, solvent use and gasoline vehicular emissions decreased, and those of fuel combustion and industrial emissions remained basically unchanged. The above results indicated that with air pollution treatment, the potential for reducing emissions of VOCs in Beijing has decreased. Therefore, regional joint prevention and control are the main ways to control VOC pollution in Beijing.
Collapse
Affiliation(s)
- Zhaoyun Liu
- School of Earth and Environment, Anhui University of Science and Technology, Anhui, 232001, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Fugeng Zha
- School of Earth and Environment, Anhui University of Science and Technology, Anhui, 232001, China.
| | - Yinghong Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Bin Yuan
- Jinan University, Guangzhou, 510632, China
| | - Baoxian Liu
- Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing Municipal Ecological Environmental Monitoring Center, Beijing, 100048, China
| | - Guiqian Tang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Liu B, Yang Y, Yang T, Dai Q, Zhang Y, Feng Y, Hopke PK. Effect of photochemical losses of ambient volatile organic compounds on their source apportionment. ENVIRONMENT INTERNATIONAL 2023; 172:107766. [PMID: 36706584 DOI: 10.1016/j.envint.2023.107766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Photochemical losses of ambient volatile organic compounds (VOCs) substantially affect source apportionment analysis. Hourly speciated VOC data measured from April to August 2020 in Tianjin, China were used to analyze the photochemical losses of VOC species and assess the impacts of photochemical losses on source apportionment by comparing the positive matrix factorization (PMF) results based on observed and initial concentration data (OC-PMF and IC-PMF). The initial concentrations of the VOC species were estimated using a photochemical age-based parameterization method. The results suggest that the average photochemical loss of total VOCs (TVOCs) during the ozone pollution period was 2.4 times higher than that during the non-ozone pollution period. The photochemical loss of alkenes was more significant than that of the other VOC species. Temperature has an important effect on photochemical losses, and different VOC species have different sensitivities to temperature; high photochemical losses mainly occurred at temperatures between 25 °C and 35 °C. Photochemical losses reduced the concentrations of highly reactive species in the OC-PMF factor profile. Compared with the IC-PMF results, the OC-PMF contributions of biogenic emissions and polymer production-related industrial sources were underestimated by 73 % and 50 %, respectively, likely due to the oxidation of isoprene and propene, respectively. The contribution of diesel and gasoline evaporation was underestimated by 39 %, which was likely due to the loss of m,p-xylene. Additionally, the contributions of liquefied petroleum gas, vehicle emissions, natural gas, and oil refinery were underestimated by 31 %, 29 %, 23 %, and 13 %, respectively. When the O3 concentrations were higher than 140 μg m-3 or the temperatures were higher than 30 °C, the photochemical losses from most sources increased substantially. Additionally, solar radiation produced different photochemical losses for different source types.
Collapse
Affiliation(s)
- Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yang Yang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Tao Yang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yufen Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
18
|
Liu Y, Qiu P, Xu K, Li C, Yin S, Zhang Y, Ding Y, Zhang C, Wang Z, Zhai R, Deng Y, Yan F, Zhang W, Xue Z, Sun Y, Ji D, Li J, Chen J, Tian H, Liu X, Zhang Y. Analysis of VOC emissions and O 3 control strategies in the Fenhe Plain cities, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116534. [PMID: 36419282 DOI: 10.1016/j.jenvman.2022.116534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Long-term continuous hourly measurements of ambient volatile organic compounds (VOCs) are scarce at the regional scale. In this study, a one-year hourly measurement campaign of VOCs was performed in Lvliang, Linfen, and Yuncheng in the heavily polluted Fenhe Plain region in China. The VOC average (±standard deviation, std) concentrations in Lvliang, Linfen, and Yuncheng were 44.4 ± 24.9, 45.7 ± 24.9, and 37.5 ± 25.0 ppbv, respectively. Compared to published data from the past two decades in China, the observed VOCs were at high concentration levels. VOCs in the Fenhe Plain cities were significantly impacted by industrial sources according to calculated emission ratios but were less affected by liquefied petroleum gas and natural gas (LPG/NG) and traffic emissions than those in megacities abroad. The emission inventories and observation data were combined for verification and identification of the key VOC species and sources controlling ozone (O3). Industrial emissions were the largest source of VOCs, accounting for 65%-79% of the total VOC emissions, while the coking industry accounted for 45.2%-66.0%. The emission inventories significantly underestimated oxygenated VOC (OVOC) emissions through the verification of VOC emission ratios. O3 control scenarios were analyzed by changing VOC/NOX reduction ratios through a photochemical box model. O3 control strategies were formulated considering local pollution control plans, emission inventories, and O3 formation regimes. The O3 reduction of reactivity-control measures was comparable with emission-control measures, ranging from 16% to 41%, which was contrary to the general perception that ozone formation potential (OFP)-based measures were more efficient for O3 reduction. Sources with high VOC emissions are accompanied by high OFP on the Fenhe Plain, indicating that the control of high-emission sources can effectively mitigate O3 pollution on this region.
Collapse
Affiliation(s)
- Yafei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Peipei Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Kai Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chenlu Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shijie Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yunjun Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yu Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chen Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Zheng Wang
- Yuncheng Municipal Ecological Environment Bureau, Yuncheng, 044000, China
| | - Ruixiao Zhai
- Yuncheng Municipal Ecological Environment Bureau, Yuncheng, 044000, China
| | - Yijun Deng
- Yuncheng Municipal Ecological Environment Bureau, Yuncheng, 044000, China
| | - Fengyu Yan
- Yuncheng Municipal Ecological Environment Bureau, Yuncheng, 044000, China
| | - Wenjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhigang Xue
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jing Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Hezhong Tian
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Zhou J, Hu M, Liu M, Yuan J, Ni M, Zhou Z, Chen D. Combining the multivariate statistics and dual stable isotopes methods for nitrogen source identification in coastal rivers of Hangzhou Bay, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82903-82916. [PMID: 35759093 PMCID: PMC9244199 DOI: 10.1007/s11356-022-21116-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Coastal rivers contributed the majority of anthropogenic nitrogen (N) loads to coastal waters, often resulting in eutrophication and hypoxia zones. Accurate N source identification is critical for optimizing coastal river N pollution control strategies. Based on a 2-year seasonal record of dual stable isotopes ([Formula: see text] and [Formula: see text]) and water quality parameters, this study combined the dual stable isotope-based MixSIAR model and the absolute principal component score-multiple linear regression (APCS-MLR) model to elucidate N dynamics and sources in two coastal rivers of Hangzhou Bay. Water quality/trophic level indices indicated light-to-moderate eutrophication status for the studied rivers. Spatio-temporal variability of water quality was associated with seasonal agricultural, aquaculture, and domestic activities, as well as the seasonal precipitation pattern. The APCS-MLR model identified soil + domestic wastewater (69.5%) and aquaculture tailwater (22.2%) as the major nitrogen pollution sources. The dual stable isotope-based MixSIAR model identified soil N, aquaculture tailwater, domestic wastewater, and atmospheric deposition N contributions of 35.3 ±21.1%, 29.7 ±17.2%, 27.9 ±14.5%, and 7.2 ±11.4% to riverine [Formula: see text] in the Cao'e River (CER) and 34.4 ±21.3%, 29.5 ±17.2%, 27.4 ±14.7%, and 8.7 ±12.8% in the Jiantang River (JTR), respectively. The APCS-MLR model and the dual stable isotope-based MixSIAR model showed consistent results for riverine N source identification. Combining these two methods for riverine N source identifications effectively distinguished the mix-source components from the APCS-MLR method and alleviated the high cost of stable isotope analysis, thereby providing reliable N source apportionment results with low requirements for water quality sampling and isotope analysis costs. This study highlights the importance of soil N management and aquaculture tailwater treatment in coastal river N pollution control.
Collapse
Affiliation(s)
- Jia Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Minpeng Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Mei Liu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Julin Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Meng Ni
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Zhiming Zhou
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Dingjiang Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Low Temperature Ozonation of Acetone by Transition Metals Derived Catalysts: Activity and Sulfur/Water Resistance. Catalysts 2022. [DOI: 10.3390/catal12101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Different transition metals (Cr/Fe/Mn/Co) derived catalysts supported on γ-Al2O3 were prepared by the isovolumetric impregnation method for catalytic ozonation of acetone (C3H6O), and their catalytic activities under industrial complex conditions were investigated. Among them, CrOx/γ-Al2O3 catalyst with Cr loading of 1.5%, abbreviated as Cr1.5%, achieved the best activity, benefitting from its larger surface area, larger proportion of Cr6+/Cr, more chemically desorbed oxygen species Oβ, appropriate acidity, and superiority of low-temperature reducibility. Simulated industrial conditions were used to investigate the applicability of Cr1.5% catalysts for catalytic ozonation of acetone. Results illustrated that the optimum temperature range was 120–140 °C, with molar ratio O3/C3H6O > 6. Different C3H6O initial concentrations had less effect over the activity of Cr1.5% catalysts, with little residual ozone, confirming the applicability of Cr1.5% catalysts in industrial application. The effects of sulfur/water vapor on catalytic activity were also investigated, and satisfactory resistance to sulfur or water vapor individually was obtained. Finally, in-situ DRIFTS measurement was carried out, to explore and illustrate mechanisms of acetone catalytic ozonation pathways and sulfur/water poisoning.
Collapse
|
21
|
Chen T, Huang L, Zhang X, Gao R, Li H, Fan K, Ma D, Ma Z, Xue L, Wang W. Effects of coal chemical industry on atmospheric volatile organic compounds emission and ozone formation in a northwestern Chinese city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156149. [PMID: 35643128 DOI: 10.1016/j.scitotenv.2022.156149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Coal is well known as the primary energy consumption in China, and the coal chemical industry (CCI) can serve as an important source of volatile organic compounds (VOCs) emissions. However, the characteristics of VOCs emitted from CCI along with their environmental consequences are still poorly understood. To pin down this, an intensive field campaign was carried out at a typical CCI city in northwestern China (Yulin) from February 26 to March 7, 2021. Results showed that VOC compositions in Yulin were distinct from those in the megacities of China as well as in the typical oilfields over the world. The concentration of naphthalene (1.6 ± 1.1 ppbv), an important byproduct of CCI, was significantly higher than that in other cities (<0.2 ppbv). Positive matrix factorization (PMF) model analysis revealed that the direct contribution of the CCI source for VOC emissions is 8.8 ± 1.8%. More importantly, these VOCs emitted from the CCI can account for 17.9 ± 6.8% of ozone (O3) formation potential and 16.9 ± 7.4% of OH reactivity of VOCs, suggesting the significant impacts of the CCI on the air quality and atmospheric oxidizing capacity. During the observation, a rapid increase in O3 concentration after a snowfall was encountered. The changing rate of O3 concentration in the daytime was significantly higher than in its peripheral cities. The increased O3 formation was partially attributed to the CCI, and this enhancement can be further magnified by snow cover due to the increment of surface albedo. These findings deepen the understanding of the characteristics and air quality impact of VOCs related to the CCI and provide valuable insights for the development of air quality control measures in the region influenced by intensive coal chemical production.
Collapse
Affiliation(s)
- Tianshu Chen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Liubin Huang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Xin Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China; Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Gao
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hong Li
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kai Fan
- Yulin Municipal Ecology and Environment Bureau, Yulin 719000, China
| | - Dun Ma
- Yulin Municipal Ecology and Environment Bureau, Yulin 719000, China
| | - Zhaokun Ma
- Shandong Academy for Environmental Planning, Ji'nan 250101, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China; Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
22
|
Zhang C, Li J, Zhao W, Yao Q, Wang H, Wang B. Open biomass burning emissions and their contribution to ambient formaldehyde in Guangdong province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155904. [PMID: 35569659 DOI: 10.1016/j.scitotenv.2022.155904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Formaldehyde (HCHO) plays a vital role in atmospheric chemistry and O3 formation. Open biomass burning (OBB) is considered to be an important source of HCHO; however, its quantitative contribution to ambient HCHO remains poorly understood due to the lack of reliable high-resolution emission inventories. In this study, a satellite-based method coupled with local emission factors was developed to estimate the hourly primary emissions of HCHO and volatile organic compound (VOC) precursors from OBB in Guangdong (GD) Province of southern China. Furthermore, the contribution of OBB to ambient HCHO was quantified using the Community Multi-scale Air Quality model. The results suggested that in average OBB emissions contributed 5293 tons of primary HCHO per year, accounting for ~14% of the total anthropogenic HCHO emissions in GD. The ambient HCHO concentration ranged from 0.3 ppbv to 8.7 ppbv during normal days, and from 8 ppbv to 45 ppbv in downwind area during OBB impacted days. The monthly contribution of OBB to local HCHO levels reached up to 50% at locations with frequent fires and over 70% during a forest fire event. Ambient HCHO was heavily affected by primary OBB emissions near the source region and by the oxidation of OBB-emitted VOCs in the downwind area. Secondary HCHO formation from OBB emissions was enhanced during photochemical pollution episodes, especially under conditions of high O3 and low NOx. OBB-emitted ethene was identified as the most important VOC precursor of HCHO and contributed to the formation of ~50% of the secondary HCHO. The HCHO formation potential of cropland fires was 26% higher than that of forest fires. Our results suggest that OBB can elevate ambient HCHO levels significantly. Thus, strict control policies on OBB should be implemented, especially for open burning agricultural residues in upwind areas on serious photochemical pollution days.
Collapse
Affiliation(s)
- Chunlin Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Jiangyong Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Wenlong Zhao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Qian Yao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| |
Collapse
|
23
|
Zulkifli MFH, Hawari NSSL, Latif MT, Hamid HHA, Mohtar AAA, Idris WMRW, Mustaffa NIH, Juneng L. Volatile organic compounds and their contribution to ground-level ozone formation in a tropical urban environment. CHEMOSPHERE 2022; 302:134852. [PMID: 35533940 DOI: 10.1016/j.chemosphere.2022.134852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
This study aims to determine the trends of volatile organic compound (VOC) concentrations and their potential contribution to O3 formation. The hourly data (August 2017 to July 2018) for 29 VOCs were obtained from three Malaysian Department of Environment continuous air quality monitoring stations with different urban backgrounds (Shah Alam, Cheras, Seremban). The Ozone Formation Potential (OFP) was calculated based on the individual Maximum Incremental Reactivity (MIR) and VOC concentrations. The results showed that the highest mean total VOC concentrations were recorded at Cheras (148 ± 123 μg m-3), within the Kuala Lumpur urban environment, followed by Shah Alam (124 ± 116 μg m-3) and Seremban (86.4 ± 89.2 μg m-3). VOCs such as n-butane, ethene, ethane and toluene were reported to be the most abundant species at all the selected stations, with overall mean concentrations of 16.6 ± 11.9 μg m-3, 12.1 ± 13.3 μg m-3, 10.8 ± 11.9 μg m-3 and 9.67 ± 9.00 μg m-3, respectively. Alkenes (51.3-59.1%) and aromatic hydrocarbons (26.4-33.5%) have been identified as the major contributors to O3 formation in the study areas based on the overall VOC measurements. Relative humidity was found to influence the concentrations of VOCs more than other meteorological parameters. Overall, this study will contribute to further understanding of the distribution of VOCs and their contribution to O3 formation, particularly in the tropical urban environment.
Collapse
Affiliation(s)
- Mohd Faizul Hilmi Zulkifli
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia; Air Division, Department of Environment, Ministry of Environment and Water, 62574, Putrajaya, Malaysia
| | - Nor Syamimi Sufiera Limi Hawari
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia; Department of Environmental Health, Faculty of Public Health, Universitas Airlangga, 60115, Surabaya, Indonesia.
| | - Haris Hafizal Abd Hamid
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Anis Asma Ahmad Mohtar
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Wan Mohd Razi Wan Idris
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Nur Ili Hamizah Mustaffa
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Liew Juneng
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| |
Collapse
|
24
|
Wang J, Zhang Y, Wu Z, Luo S, Song W, Wang X. Ozone episodes during and after the 2018 Chinese National Day holidays in Guangzhou: Implications for the control of precursor VOCs. J Environ Sci (China) 2022; 114:322-333. [PMID: 35459495 DOI: 10.1016/j.jes.2021.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/29/2021] [Accepted: 09/06/2021] [Indexed: 06/14/2023]
Abstract
The impact of reducing industrial emissions of volatile organic compounds (VOCs) on ozone (O3) pollution is of wide concern particularly in highly industrialized megacities. In this study, O3, nitrogen oxides (NOx) and VOCs were measured at an urban site in the Pearl River Delta region during the 2018 Chinese National Day Holidays and two after-holiday periods (one with ozone pollution and another without). O3 pollution occurred throughout the 7-day holidays even industrial emissions of VOCs were passively reduced due to temporary factory shutdowns, and the toluene to benzene ratios dropped from ∼10 during non-holidays to ∼5 during the holidays. Box model (AtChem2-MCM) simulations with the input of observation data revealed that O3 formation was all VOC-limited, and alkenes had the highest relative incremental reactivity (RIR) during the holiday and non-holiday O3 episodes while aromatics had the highest RIR during the non-pollution period. Box model also demonstrated that even aromatics decreased proportionally to levels with near-zero contributions of industrial aromatic solvents, O3 concentrations would only decrease by less than 20% during the holiday and non-holiday O3 episodes and ozone pollution in the periods could not be eliminated. The results imply that controlling emissions of industrial aromatic solvents might be not enough to eliminate O3 pollution in the region, and more attention should be paid to anthropogenic reactive alkenes. Isoprene and formaldehyde were among the top 3 species by RIRs in all the three pollution and non-pollution periods, suggesting substantial contribution to O3 formation from biogenic VOCs.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhenfeng Wu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilu Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Chen D, Zhou L, Wang C, Liu H, Qiu Y, Shi G, Song D, Tan Q, Yang F. Characteristics of ambient volatile organic compounds during spring O 3 pollution episode in Chengdu, China. J Environ Sci (China) 2022; 114:115-125. [PMID: 35459477 DOI: 10.1016/j.jes.2021.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 06/14/2023]
Abstract
Surface ozone (O3) has become a critical pollutant impeding air quality improvement in many Chinese megacities. Chengdu is a megacity located in Sichuan Basin in southwest China, where O3 pollution occurs frequently in both spring and summer. In order to understand the elevated O3 during spring in Chengdu, we conducted sampling campaign at three sites during O3 pollution episodes in April. Volatile organic compounds (VOCs) compositions at each site were similar, and oxygenated VOCs (OVOCs) concentrations accounted for the highest proportion (35%-45%), followed by alkanes, alkens (including acetylene), halohydrocarbons, and aromatics. The sensitivity of O3 to its precursors was analyzed using an observation based box model. The relative incremental reactivity of OVOCs was larger than other precursors, suggesting that they also played the dominant role in O3 formation. Furthermore, the positive matrix factorization model was used to identify the dominant emission sources and to evaluate their contribution to VOCs in the city. The main sources of VOCs in spring were from combustion (27.75%), industrial manufacturing (24.17%), vehicle exhaust (20.35%), and solvent utilization (18.35%). Discussions on VOCs and NOx reduction schemes suggested that Chengdu was typical in the VOC-limited regime, and VOC emission reduction would help to prevent and control O3. The analysis of emission reduction scenarios based on VOCs sources showed that the emission reduction ratio of VOCs to NO2 needs to reach more than 3 in order to achieve O3 prevention. Emission reduction from vehicular exhaust source and solvent utilization source may be more effective.
Collapse
Affiliation(s)
- Dongyang Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Chen Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Hefan Liu
- Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Yang Qiu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Guangming Shi
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Danlin Song
- Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
26
|
Li F, Tong S, Jia C, Zhang X, Lin D, Zhang W, Li W, Wang L, Ge M, Xia L. Sources of ambient non-methane hydrocarbon compounds and their impacts on O 3 formation during autumn, Beijing. J Environ Sci (China) 2022; 114:85-97. [PMID: 35459517 DOI: 10.1016/j.jes.2021.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/19/2022]
Abstract
The field observation of 54 non-methane hydrocarbon compounds (NMHCs) was conducted from September 1 to October 20 in 2020 during autumn in Haidian District, Beijing. The mean concentration of total NMHCs was 29.81 ± 11.39 ppbv during this period, and alkanes were the major components. There were typical festival effects of NMHCs with lower concentration during the National Day. Alkenes and aromatics were the dominant groups in ozone formation potential (OFP) and OH radical loss rate (LOH). The positive matrix factorization (PMF) running results revealed that vehicular exhaust became the biggest source in urban areas, followed by liquefied petroleum gas (LPG) usage, solvent usage, and fuel evaporation. The box model coupled with master chemical mechanism (MCM) was applied to study the impacts of different NMHCs sources on ozone (O3) formation in an O3 episode. The simulation results indicated that reducing NMHCs concentration could effectively suppress O3 formation. Moreover, reducing traffic-related emissions of NMHCs was an effective way to control O3 pollution at an urban site in Beijing.
Collapse
Affiliation(s)
- Fangjie Li
- College of Chemistry, Liaoning University, Shenyang 110036, China; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chenhui Jia
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinran Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deng Lin
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Oasis Ecology, College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, China
| | - Wenqian Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weiran Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China; Department of Chemical and Environmental Engineering, Yingkou Institute of Technology, Yingkou 115014, China.
| |
Collapse
|
27
|
Characterization of VOCs during Nonheating and Heating Periods in the Typical Suburban Area of Beijing, China: Sources and Health Assessment. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent years, the “coal to electricity” project (CTEP) using clean energy instead of coal for heating has been implemented by Beijing government to cope with air pollution. However, VOC pollution after CTEP was rarely studied in suburbs of Beijing. To fill this exigency, 116 volatile organic compounds (VOCs) were observed during nonheating (P1) and heating (P2) periods in suburban Beijing. The results showed that the total of VOCs (TVOCs) was positively correlated with PM2.5, PM10, NO2, CO, and SO2 but negatively correlated with O3 and wind speed. The average TVOCs concentration was 19.43 ± 12.41 ppbv in P1 and 16.25 ± 8.01 ppbv in P2. Aromatics and oxygenated VOCs (OVOCs) were the main contributors to ozone formation potential (OFP). Seven sources of VOCs identified by the positive matrix factorization (PMF) model were industrial source, coal combustion, fuel evaporation, gasoline vehicle exhaust, diesel vehicle exhaust, background and biogenic sources, and solvent usage. The contribution of coal combustion to VOCs increased significantly during P2, whereas industrial sources, fuel evaporation, and solvent usage exhibited opposite trends. The potential source contribution function (PSCF) and concentration weighted trajectory (CWT) were used to analyze the source distributions. The results showed that VOC pollution was caused mainly by air mass from southern Hebei during P1 but by local emissions during P2. Therefore, although the contribution of coal combustion after heating increased, TVOCs concentration during P2 was lower than that during P1. Chronic noncarcinogenic risks of all selected VOC species were below the safe level, while the carcinogenic risks of most selected VOC species were above the acceptable risk level, especially for tetrachloromethane and 1,2-dichloroethane. The cancer risks posed by gasoline vehicle emissions, industrial enterprises, and coal combustion should be paid more attention.
Collapse
|
28
|
Sahu LK, Tripathi N, Gupta M, Singh V, Yadav R, Patel K. Impact of COVID-19 Pandemic Lockdown in Ambient Concentrations of Aromatic Volatile Organic Compounds in a Metropolitan City of Western India. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2022JD036628. [PMID: 35602912 PMCID: PMC9111284 DOI: 10.1029/2022jd036628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 06/15/2023]
Abstract
The real-time Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) concentrations were measured in a metropolitan city of India during January to May of 2020 and 2014-2015-2018 to assess the impact of emission reduction during the COVID-19 lockdown. The total BTEX (∑BTEX) concentrations were 11.5 ± 9.0, 15.7 ± 16, 5.3 ± 5.0, 2.9 ± 2.0, and 0.93 ± 1.2 ppbv in January-May 2020, respectively. The evening rush hour peaks of BTEX during lockdown decreased by 4-5 times from the same period of years 2014-2015-2018. A significant decline in background concentrations suggests a regional-scale reduction in anthropogenic emissions. The contributions of ∑TEX compounds to ∑BTEX increased from 42% to 59% in winter to 64%-75% during the lockdown under hot summer conditions. While emission reductions dominated during the lockdown period, the meteorological and photochemical factors may also have contributed. Meteorological influence on actual observed BTEX data was removed by normalizing with ventilation coefficient (VC). The actual ambient air reductions of 85%-90% and VC-normalized reductions of 54%-88% of the BTEX concentrations during lockdown were estimated compared to those during the same period of 2014-2015-2018. The estimated changes using nighttime data, which take into account BTEX photooxidation removal, are ∼8% lower than the VC-normalized estimates using all data. These significant reductions in BTEX concentrations are consistent with the change in people's movement as inferred from mobility data during the lockdown. Although enforced, the significant decline in ambient BTEX levels during lockdown was a good change for the air quality. The study suggests a need for more effective science-based policies that consider local and regional factors.
Collapse
Affiliation(s)
- L. K. Sahu
- Physical Research Laboratory (PRL)AhmedabadIndia
| | | | - Mansi Gupta
- Physical Research Laboratory (PRL)AhmedabadIndia
- Indian Institute of Technology GandhinagarGandhinagarIndia
| | - Vikas Singh
- National Atmospheric Research Laboratory (NARL)GadankiIndia
| | - Ravi Yadav
- Indian Institute of Tropical Meteorology (IITM)PuneIndia
| | | |
Collapse
|
29
|
Multi-Year Variation of Ozone and Particulate Matter in Northeast China Based on the Tracking Air Pollution in China (TAP) Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073830. [PMID: 35409512 PMCID: PMC8997942 DOI: 10.3390/ijerph19073830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022]
Abstract
With the rapid development of economy and urbanization acceleration, ozone (O3) pollution has become the main factor of urban air pollution in China after particulate matter. In this study, 90th percentile of maximum daily average (MDA) 8 h O3 (O3-8h-90per) and PM2.5 data from the Tracking Air Pollution in China (TAP) dataset were used to determine the mean annual, seasonal, monthly, and interannual distribution of O3-8h-90per and PM2.5 concentrations in Northeast China (NEC). The O3-8h-90per concentration was highest in Liaoning (>100 μg/m3), whereas the highest PM2.5 concentration was observed mainly in urban areas of central Liaoning and the Harbin−Changchun urban agglomeration (approximately 60 μg/m3). The O3-8h-90per concentrations were highest in spring and summer due to more intense solar radiation. On the contrary, the PM2.5 concentration increased considerably in winter influenced by anthropogenic activities. In May and June, the highest monthly mean O3-8h-90per concentrations were observed in central and western Liaoning, about 170−180 μg/m3, while the PM2.5 concentrations were the highest in January, February, and December, approximately 100 μg/m3. The annual mean O3-8h-90per concentration in NEC showed an increasing trend, while the PM2.5 concentration exhibited an annual decline. By 2020, the annual mean O3-8h-90per concentration in southern Liaoning had increased considerably, reaching 120−130 μg/m3. From the perspective of city levels, PM2.5 and O3-8h-90per also showed an opposite variation trend in the 35 cities of NEC. The reduced tropospheric NO2 column is consistent with the decreasing trend of the interannual PM2.5, while the increased surface temperature could be the main meteorological factor affecting the O3-8h-90per concentration in NEC. The results of this study enable a comprehensive understanding of the regional and climatological O3-8h-90per and PM2.5 distribution at distinct spatial and temporal scales in NEC.
Collapse
|
30
|
Sources and Seasonal Variance of Ambient Volatile Organic Compounds in the Typical Industrial City of Changzhi, Northern China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Volatile organic compounds (VOCs) emitted from industrial processes, which are major emission sources of air pollutants, could cause significant impacts on air quality. However, studies on the comprehensive analysis from sources contributing to the health risk perspective regarding ambient VOCs in industrial cities are limited. In this study, VOC samples were collected from 15 April 2018 to 19 October 2018 in Changzhi, a typical industrial city in northern China, and a total of 57 VOCs were measured for analysis. The average VOC concentrations were 54.4 µg·m−3, with the highest concentrations in autumn (58.4 µg·m−3). Ambient VOCs in spring, summer and autumn were all dominated by alkanes (66.8%), with contributions of 70.3%, 66.3% and 63.8%, respectively. The top five concentrations of total VOCs were isopentane (19.0%), ethane (9.5%), n-butane (8.1%), benzene (7.9%) and propane (5.2%), indicating that vehicle exhaust and coal combustion are the main sources of VOCs. Source apportionment by principal component analysis showed that vehicle exhaust (27.5%) and coal combustion (23.5%) were the main sources of VOCs in Changzhi, followed by industrial production (17.4%), solvent evaporation (13.5%), liquefied petroleum gas/natural gas leaking (9.5%), and biogenic emissions (8.7%). Sources of coal combustion and vehicle exhaust contributed more VOCs than industrial production. The carcinogenic risks of benzene (3.4 × 10−5) and ethylbenzene (2.2 × 10−6) were higher than the limit levels (1 × 10−6). Coal combustion contributed most (25.3%) to the carcinogenic risks because of its high VOC emissions. In an industrial city such as Changzhi, vehicle exhaust and coal combustion have become major sources of ambient air VOCs owing to the increasingly stringent industrial standards. Therefore, VOCs from vehicle exhaust and coal combustion also need to take into account mitigation measures for VOCs from the perspective of source contribution to health risk.
Collapse
|
31
|
Meng Y, Song J, Zeng L, Zhang Y, Zhao Y, Liu X, Guo H, Zhong L, Ou Y, Zhou Y, Zhang T, Yue D, Lai S. Ambient volatile organic compounds at a receptor site in the Pearl River Delta region: Variations, source apportionment and effects on ozone formation. J Environ Sci (China) 2022; 111:104-117. [PMID: 34949340 DOI: 10.1016/j.jes.2021.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/14/2023]
Abstract
We present the continuously measurements of volatile organic compounds (VOCs) at a receptor site (Wan Qing Sha, WQS) in the Pearl River Delta (PRD) region from September to November of 2017. The average mixing ratios of total VOCs (TVOCs) was 36.3 ± 27.9 ppbv with the dominant contribution from alkanes (55.5%), followed by aromatics (33.3%). The diurnal variation of TVOCs showed a strong photochemical consumption during daytime, resulting in the formation of ozone (O3). Five VOC sources were resolved by the positive matrix factorization (PMF) model, including solvent usage (28.6%), liquid petroleum gas (LPG) usage (24.4%), vehicle exhaust (21.0%), industrial emissions (13.2%) and gasoline evaporation (12.9%). The regional transport air masses from the upwind cities of south China can result in the elevated concentrations of TVOCs. Low ratios of TVOCs/NOx (1.53 ± 0.88) suggested that the O3 formation regime at WQS site was VOC-limited, which also confirmed by a photochemical box model with the master chemical mechanism (PBM-MCM). Furthermore, the observation on high-O3 episode days revealed that frequent O3 outbreaks at WQS were mainly caused by the regional transport of anthropogenic VOCs especially for aromatics and the subsequent photochemical reactions. This study provides valuable information for policymakers to propose the effective control strategies on photochemical pollution in a regional perspective.
Collapse
Affiliation(s)
- Yao Meng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Junwei Song
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Lewei Zeng
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yan Zhao
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Xufei Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hai Guo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Liuju Zhong
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Yubo Ou
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Yan Zhou
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Tao Zhang
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Dingli Yue
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China.
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, and Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
32
|
Garg A, Kumar A, Gupta NC. Comprehensive study on impact assessment of lockdown on overall ambient air quality amid COVID-19 in Delhi and its NCR, India. JOURNAL OF HAZARDOUS MATERIALS LETTERS 2021; 2:100010. [PMID: 34977841 PMCID: PMC8686542 DOI: 10.1016/j.hazl.2020.100010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 05/22/2023]
Abstract
Indian government announced the complete lockdown from 25 March, 2020 for all outdoor activities across the country due to containment of COVID-19. This study is an attempt to assess the impacts of lockdown on ambient air quality in five cities of Indian National Capital Region including Delhi, Gurugram, Noida, Ghaziabad and Faridabad. In this context, the data of air pollutants (PM10, PM2.5, NOx, NO, NO2, SO2, NH3, SO2, CO, and C6H6) from 36 locations of the study area were analyzed from 1st March to 1st May, 2020. The results showed that PM10 and PM2.5 level decreased upto 55-65 %. NOx and NO have shown maximum reduction (∼ 50-78 %). Similarly, consistent and significant reduction in other air pollutants such as SO2 (∼33 %), CO (∼45 %), NH3 (∼27 %) and C6H6 (∼53 %) has been observed. During lockdown Air Quality Index (AQI) shows improvement as its value significantly decreased (∼ 45 %-68 %). An interesting feature observed that during first week of lockdown O3 decreased but later it increased by ∼19-27%. The study suggests that this pandemic gives lessons for interventions for urban air pollution mitigation in controlling the health impact due to urban air pollution.
Collapse
Affiliation(s)
- Anchal Garg
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector- 16 C, Dwarka, New Delhi, 110078, India
| | - Arvind Kumar
- Department of Science and Technology, Ministry of Science and Technology, India
| | - N C Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector- 16 C, Dwarka, New Delhi, 110078, India
| |
Collapse
|
33
|
Zhang D, He B, Yuan M, Yu S, Yin S, Zhang R. Characteristics, sources and health risks assessment of VOCs in Zhengzhou, China during haze pollution season. J Environ Sci (China) 2021; 108:44-57. [PMID: 34465436 DOI: 10.1016/j.jes.2021.01.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 06/13/2023]
Abstract
Zhengzhou is one of the most haze-polluted cities in Central China with high organic carbon emission, which accounts for 15%-20% of particulate matter (PM2.5) in winter and causes significantly adverse health effects. Volatile organic compounds (VOCs) are the precursors of secondary PM2.5 and O3 formation. An investigation of characteristics, sources and health risks assessment of VOCs was carried out at the urban area of Zhengzhou from 1st to 31st December, 2019. The mean concentrations of total detected VOCs were 48.8 ± 23.0 ppbv. Alkanes (22.0 ± 10.4 ppbv), halocarbons (8.1 ± 3.9 ppbv) and aromatics (6.5 ± 3.9 ppbv) were the predominant VOC species, followed by alkenes (5.1 ± 3.3 ppbv), oxygenated VOCs (3.6 ± 1.8 ppbv), alkyne (3.5 ± 1.9, ppbv) and sulfide (0.5 ± 0.9 ppbv). The Positive Matrix Factorization model was used to identify and apportion VOCs sources. Five major sources of VOCs were identified as vehicular exhaust, industrial processes, combustion, fuel evaporation, and solvent use. The carcinogenic and non-carcinogenic risk values of species were calculated. The carcinogenic and non-carcinogenic risks of almost all air toxics increased during haze days. The total non-carcinogenic risks exceeded the acceptable ranges. Most VOC species posed no non-carcinogenic risk during three haze events. The carcinogenic risks of chloroform, 1,2-dichloroethane, 1,2-dibromoethane, benzyl chloride, hexachloro-1,3-butadiene, benzene and naphthalene were above the acceptable level (1.0 × 10-6) but below the tolerable risk level (1.0 × 10-4). Industrial emission was the major contributor to non-carcinogenic, and solvent use was the major contributor to carcinogenic risks.
Collapse
Affiliation(s)
- Dong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bing He
- Environmental Protection Monitoring Center Station of Zhengzhou, Zhengzhou 450007, China
| | - Minghao Yuan
- Environmental Protection Monitoring Center Station of Zhengzhou, Zhengzhou 450007, China
| | - Shijie Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shasha Yin
- Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiqin Zhang
- Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450001, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
34
|
VOC Characteristics and Their Source Apportionment in the Yangtze River Delta Region during the G20 Summit. ATMOSPHERE 2021. [DOI: 10.3390/atmos12070928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To evaluate the effectiveness of measures to reduce the levels of volatile organic compounds (VOCs), which are important precursors of ground-level ozone formation, the real-time monitoring data of VOCs at the urban Zhaohui supersite (ZH), the Dianshan Lake regional supersite (DSL) and the urban Yixing station (YX) in the Yangtze River Delta region were analyzed from 23 August to 15 September 2016 during the G20 Hangzhou Summit. The average mole ratios of VOCs at the three sites were 6.56, 21.33 and 19.62 ppb, respectively, which were lower than those (13.65, 27.72 and 21.38 ppb) after deregulation. The characteristics of the VOCs varied during the different control periods. Synoptic conditions and airmass transport played an important role in the transport and accumulation of VOCs and other pollutants, which affected the control effects. Using the positive matrix factorization (PMF) method in source apportionment, five factors were identified, namely, vehicle exhaust (19.66–31.47%), plants (5.59–17.07%), industrial emissions (13.14–33.82%), fuel vaporization (12.83–26.34%) and solvent usage (17.84–28.95%) for the ZH and YX sites. Factor 4 was identified as fuel vaporization + incomplete combustion (21.69–25.35%) at the DSL site. The Non-parametric Wind Regression (NWR) method showed that regional transport was the main factor influencing the VOC distribution.
Collapse
|
35
|
Yang L, Yuan Z, Luo H, Wang Y, Xu Y, Duan Y, Fu Q. Identification of long-term evolution of ozone sensitivity to precursors based on two-dimensional mutual verification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143401. [PMID: 33243506 DOI: 10.1016/j.scitotenv.2020.143401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Tropospheric ozone pollution has been continuously worsening in China during the past decade. Identification of long-term evolution of ozone sensitivity to precursors is essential to evaluating the impact of emission reduction measures on ozone pollution. Traditional observation-based model and 3-d numerical model are not suitable for analyzing long-term variation of ozone sensitivity to precursors. In this study, by transforming the conventional ozone isopleth plot into a VOCR isopleth plot in the functional space of NOx and ozone concentrations, we developed a novel approach to identify ozone sensitivity to precursors by simply using long-term monitoring data of ozone, NOx and temperature. This approach estimated ozone formation regimes (OFR) by ozone sensitivity to NOx and temperature separately, and the convergence of OFR serves as a way of mutual verification. We found that ozone formation was generally in the VOCR-limited or transitional regime in Shanghai, the largest metropolitan area in China. However, OFR was shifted to NOx-limited at Pudong station during 2017-19 due much to the stringent NOx emission control. OFR was also shifted to NOx-limited along with the increasing temperature. When temperature was over 30 °C, Shanghai was mostly in a NOx-limited OFR. This highlights that the NOx emission control measures need to be strengthened to reduce peak ozone levels more efficiently. Jinshan station exhibited a different trend with OFR shifted to VOCR-limited in 2017-19, which proved the effectiveness of VOCs emission control on petrochemical sector. However, OFR was shifted to NOx-limited when temperature was over 30 °C, suggesting more stringent VOCs emissions control should be targeted on days with higher temperature.
Collapse
Affiliation(s)
- Leifeng Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Zibing Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Huihong Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yiran Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuanqian Xu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| |
Collapse
|
36
|
Volatile Organic Compounds Monitored Online at Three Photochemical Assessment Monitoring Stations in the Pearl River Delta (PRD) Region during Summer 2016: Sources and Emission Areas. ATMOSPHERE 2021. [DOI: 10.3390/atmos12030327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Volatile organic compounds (VOCs) were monitored online at three photochemical assessment monitoring stations (MDS, WQS and HGS) in the Pearl River Delta region during the summer of 2016. Measured levels of VOCs at the MDS, WQS and HGS sites were 34.78, 8.54 and 8.47 ppbv, respectively, with aromatics and alkenes as major ozone precursors and aromatics as major precursors to secondary organic aerosol (SOA). The positive matrix factorization (PMF) model revealed that VOCs at the sites mainly came from vehicle exhaust, petrochemical industry, and solvent use. Vehicle exhaust and industrial processes losses contributed most to ozone formation potentials (OFP) of VOCs, while industrial processes losses contributed most to SOA formation potentials of VOCs. Potential source contribution function (PSCF) analysis revealed a north-south distribution for source regions of aromatics occurring at MDS with emission sources in Guangzhou mainly centered in the Guangzhou central districts, and source regions of aromatics at WQS showed an east-west distribution across Huizhou, Dongguan and east of Guangzhou, while that at HGS showed a south-north distribution across Guangzhou, Foshan, Zhaoqing and Yangjiang. This study demonstrates that multi-point high time resolution data can help resolve emission sources and locate emission areas of important ozone and SOA precursors.
Collapse
|
37
|
Cui L, Li HW, Huang Y, Zhang Z, Lee SC, Blake DR, Wang XM, Ho KF, Cao JJ. The characteristics and sources of roadside VOCs in Hong Kong: Effect of the LPG catalytic converter replacement programme. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143811. [PMID: 33246717 DOI: 10.1016/j.scitotenv.2020.143811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
In order to improve local air quality of Hong Kong, more than 99% taxies and public light buses were changed from diesel to liquefied petroleum gas (LPG) fuel type in the early 2000s. In addition to the catalytic converters wear and tear, it is necessary to control air pollutants emitted from LPG vehicles. Therefore, an LPG catalytic converter replacement programme (CCRP) was fulfilled from October 2013 to April 2014 by the Hong Kong government. Roadside volatile compounds (VOCs) were measured by on-line measurement techniques before and after the programme to evaluate the effectiveness of the LPG CCRP. The mixing ratios of total measured VOCs were found decreased from 69.3 ± 12.6 ppbv to 43.9 ± 6.5 ppbv after the LPG CCRP with the decreasing percentage of 36.7%. In addition, the total mixing ratio of LPG tracers, namely propane, i-butane, and n-butane, accounted for 49% of total measured VOCs before the LPG CCRP and the weighting percentage decreased to 34% after the programme. Moreover, the source apportionment of roadside VOCs also reflects the large decreasing trend of LPG vehicular emissions after the air pollution control measure. Due to the application of PTR-MS on measuring real-time VOCs and oxygenated volatile compounds (OVOCs) in this study, the emission ratios of individual OVOCs were investigated and being utilized to differentiate primary and secondary/biogenic sources of roadside OVOCs in Hong Kong. The findings demonstrate the effectiveness of the intervention programme, and are helpful to further implementation of air pollution control strategies in Hong Kong.
Collapse
Affiliation(s)
- Long Cui
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Shaanxi Key Laboratory of Atmospheric and Haze-fog Pollution Prevention, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Hai Wei Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yu Huang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Shaanxi Key Laboratory of Atmospheric and Haze-fog Pollution Prevention, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Zhou Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shun Cheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Donald Ray Blake
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Xin Ming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jun Ji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Shaanxi Key Laboratory of Atmospheric and Haze-fog Pollution Prevention, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| |
Collapse
|
38
|
Hui L, Ma T, Gao Z, Gao J, Wang Z, Xue L, Liu H, Liu J. Characteristics and sources of volatile organic compounds during high ozone episodes: A case study at a site in the eastern Guanzhong Plain, China. CHEMOSPHERE 2021; 265:129072. [PMID: 33302209 DOI: 10.1016/j.chemosphere.2020.129072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
This study performed continuous measurements of 105 volatile organic compounds (VOCs) in Weinan in the eastern Guanzhong Plain from 1 July to September 19, 2019. Ozone (O3) episode and non-episode days were identified according to China Ambient Air Quality Standard, and the concentrations of total quantified VOCs (TVOCs) were 33.43 ± 13.64 ppbv and 29.13 ± 14.31 ppbv, respectively. During different O3 pollution episodes, alkanes comprised the highest proportion to TVOC concentrations, while alkenes contributed the most to ozone formation potential (OFP). In addition, O3 episode days were mainly caused by enhanced emissions of precursors and meteorological conditions favorable to O3 production. Based on Empirical Kinetic Modelling Approach (EKMA), the O3 formation in Weinan was found in the transitional regime, in which the synergistic reduction of VOCs and nitrogen oxide (NOx) would be more effective for O3 reduction. Eight sources were identified by positive matrix factorization (PMF) model, with natural gas (NG)/liquefied petroleum gas (LPG) usage as the most significant contributor to VOC concentration, followed by vehicle exhaust, biomass burning, solvent usage, fuel evaporation, rubber/plastic industrial emissions, biogenic source, and mixed industrial emissions. Furthermore, rubber/plastic industrial emissions, solvent usage, fuel evaporation, and vehicle exhaust were the most significant sources to O3 formation. Based on conditional bivariate probability function (CBPF), vehicle exhaust, fuel evaporation, and solvent usage were mainly local emissions, while other sources were mainly affected by regional transport. This study provides useful reference for research on the atmospheric photochemical formation of O3 and evidence for regional O3 reduction strategies.
Collapse
Affiliation(s)
- Lirong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Tong Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zongjiang Gao
- Nanjing Intelligent Environmental Science and Technology Co., Ltd., Nanjing, 211800, China
| | - Jian Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Ji'nan, 250013, China
| | - Hanqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiayuan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
39
|
Wang Z, Zhou Y, Zhang Y, Huang X, Duan X, Chen D, Ou Y, Tang L, Liu S, Hu W, Liao C, Zheng Y, Wang L, Xie M, Zheng J, Liu S, Luo M, Wu F, Deng Z, Tian H, Peng J, Yang H, Xiao S, Wang X, Zhong N, Ran P. Association of change in air quality with hospital admission for acute exacerbation of chronic obstructive pulmonary disease in Guangdong, China: A province-wide ecological study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111590. [PMID: 33396113 DOI: 10.1016/j.ecoenv.2020.111590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
AIMS To assess possible effect of air quality improvements, we investigated the temporal change in hospital admissions for acute exacerbations of chronic obstructive pulmonary disease (AECOPD) associated with pollutant concentrations. METHODS We collected daily concentrations of particulate matter (i.e., PM2.5, PM10 and PMcoarse), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and admissions for AECOPD for 21 cities in Guangdong from 2013 to 2017. We examined the association of air pollution with AECOPD admissions using two-stage time-series analysis, and estimated the annual attributable fractions, numbers, and direct hospitalization costs of AECOPD admissions with principal component analysis. RESULTS From 2013-2017, mean daily concentrations of SO2, PM10 and PM2.5 declined by nearly 40%, 30%, and 26% respectively. As the average daily 8 h O3 concentration increased considerably, the number of days exceeding WHO target (i.e.,100 μg/m³) increased from 103 in 2015-152 in 2017. For each interquartile range increase in pollutant concentration, the relative risks of AECOPD admission at lag 0-3 were 1.093 (95% CI 1.06-1.13) for PM2.5, 1.092 (95% CI 1.08-1.11) for O3, and 1.092 (95% CI 1.05-1.14) for SO2. Attributable fractions of AECOPD admission advanced by air pollution declined from 9.5% in 2013 to 4.9% in 2016, then increased to 6.0% in 2017. A similar declining trend was observed for direct AECOPD hospitalization costs. CONCLUSION Declined attributable hospital admissions for AECOPD may be associated with the reduction in concentrations of PM2.5, PM10 and SO2 in Guangdong, while O3 has emerged as an important risk factor. Summarizes the main finding of the work: Reduction in PM may result in declined attributable hospitalizations for AECOPD, while O3 has emerged as an important risk factor following an intervention.
Collapse
Affiliation(s)
- Zihui Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yongbo Zhang
- Department of Environmental Protection of Guangdong Province, Guangdong Provincial Academy of Environmental Science, Guangzhou, China
| | - Xiaoliang Huang
- Department of Health of Guangdong Province, Government Affairs Service Center of Health Commission of Guangdong Province, Guangzhou, China
| | - Xianzhong Duan
- Department of Environmental Protection of Guangdong Province, Department of Ecology and Environment of Guangdong Province, Guangzhou, China
| | - Duohong Chen
- Department of Environmental Protection of Guangdong Province, Guangdong Environmental Monitoring Center, Key Laboratory of Regional Air Quality Monitoring, Ministry of Environmental Protection, Guangzhou, China
| | - Yubo Ou
- Department of Environmental Protection of Guangdong Province, Guangdong Environmental Monitoring Center, Key Laboratory of Regional Air Quality Monitoring, Ministry of Environmental Protection, Guangzhou, China
| | - Longhui Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shiliang Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Center for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, Canada
| | - Wei Hu
- Department of Health of Guangdong Province, Government Affairs Service Center of Health Commission of Guangdong Province, Guangzhou, China
| | - Chenghao Liao
- Department of Environmental Protection of Guangdong Province, Guangdong Provincial Academy of Environmental Science, Guangzhou, China
| | - Yijia Zheng
- Department of Environmental Protection of Guangdong Province, Guangdong Provincial Academy of Environmental Science, Guangzhou, China
| | - Long Wang
- Department of Environmental Protection of Guangdong Province, Guangdong Provincial Academy of Environmental Science, Guangzhou, China
| | - Min Xie
- Department of Environmental Protection of Guangdong Province, Guangdong Environmental Monitoring Center, Key Laboratory of Regional Air Quality Monitoring, Ministry of Environmental Protection, Guangzhou, China
| | - Jinzhen Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Sha Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ming Luo
- School of Geography and Planning, Sun Yat Sen University, Guangzhou, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Heshen Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Huajing Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shan Xiao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xinwang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
40
|
Fu S, Guo M, Luo J, Han D, Chen X, Jia H, Jin X, Liao H, Wang X, Fan L, Cheng J. Improving VOCs control strategies based on source characteristics and chemical reactivity in a typical coastal city of South China through measurement and emission inventory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140825. [PMID: 32755775 PMCID: PMC7354770 DOI: 10.1016/j.scitotenv.2020.140825] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
In China, the corresponding control directives for volatile organic compounds (VOCs) have been based on primary emissions, rarely considering reactive speciation. To seek more effective VOCs control strategies, we investigated 107 VOC species in a typical coastal city (Beihai) of South China, from August to November 2018. Meanwhile, a high-resolution anthropogenic VOCs monthly emission inventory (EI) was established for 2018. For source apportionments (SAs) reliability, comparisons of source structures derived from positive matrix factorization (PMF) and EI were made mainly in terms of reaction losses, uncertainties and specific ratios. Finally, for the source-end control, a comprehensive reactivity control index (RCI) was established by combing SAs with reactive speciation profiles. Ambient measurements showed that the average concentration of VOCs was 26.38 ppbv, dominated by alkanes (36.7%) and oxygenated volatile organic compounds (OVOCs) (29.4%). VOC reactivity was estimated using ozone formation potential (52.35 ppbv) and propylene-equivalent concentration (4.22 ppbv). EI results displayed that the entire VOC, OFP, and propylene-equivalent emissions were 40.98 Gg, 67.98 Gg, and 105.93 Gg, respectively. Comparisons of source structures indicated that VOC SAs agreed within ±100% between two perspectives. Both PMF and EI results showed that petrochemical industry (24.0% and 33.0%), food processing and associated combustion (19.1% and 29.2%) were the significant contributors of anthropogenic VOCs, followed by other industrial processes (22.2% and 13.3%), transportation (18.9% and 12.0%), and solvent utilization (9.1% and10.5%). Aimed at VOCs abatement according to RCI: for terminal control, fifteen ambient highly reactive species (predominantly alkenes and alkanes) were targeted; for source control, the predominant anthropogenic sources (food industry, solvent usage, petrochemical industry and transportation) and their emitted highly reactive species were determined. Particularly, with low levels of ambient VOC and primary emissions, in this VOC and NOx double-controlled regime, crude disorganized emission from food industry contributed a high RCI.
Collapse
Affiliation(s)
- Shuang Fu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meixiu Guo
- Beihai Ecology and Environment Agency, Beihai, Guangxi 536000, China
| | - Jinmin Luo
- Beihai Ecology and Environment Agency, Beihai, Guangxi 536000, China
| | - Deming Han
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojia Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haohao Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodan Jin
- Environmental Protection Research Institute of Guangxi, Nanning, Guangxi 530022, China
| | - Haoxiang Liao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linping Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinping Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
41
|
Gu Y, Liu B, Li Y, Zhang Y, Bi X, Wu J, Song C, Dai Q, Han Y, Ren G, Feng Y. Multi-scale volatile organic compound (VOC) source apportionment in Tianjin, China, using a receptor model coupled with 1-hr resolution data. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115023. [PMID: 32593924 DOI: 10.1016/j.envpol.2020.115023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The multi-scale chemical characteristics and source apportionment of volatile organic compounds (VOCs) were analysed in Tianjin, China, using 1-hr resolution VOC-species data between November 1, 2018 and March 15, 2019. The average total VOC (TVOC) concentration was 30.6 ppbv during the heating season. The alkanes accounted for highest proportion of the TVOC, while the alkenes were the predominant species forming ozone, especially ethylene. Compared to the clean period, the concentration of acetylene during the haze events showed highest increase rate, followed by the ethane; and the concentrations and proportions of alkanes and alkenes were highest during the growth stage (GS) of haze events. The multi-scale apportionment results suggested petrochemical industry and solvent usage (PI/SU, 31.2%), vehicle emissions and liquefied petroleum gas (VE/LPG, 20.5%), and combustion emissions (CE, 19.1%) were the main VOC sources during the heating season. Compared to the clean period, the contributions of PI/SU, VE/LPG, CE, and refinery emissions notably increased during the haze events, while that of gasoline evaporation decreased. The contributions of PI/SU and RPI showed significantly increase during the GS of haze events, whereas most sources decreased during the dissipation stage of haze events. Diurnal-variations in source contributions during the haze events were clearer than the clean period, and the contributions of PI/SU, VE/LPG, and CE during the haze events were markedly higher at night. These findings provide valuable information to inform effective VOC control and prevention measures with specific relevance for the control of ozone pollution in Tianjin.
Collapse
Affiliation(s)
- Yao Gu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yafei Li
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yufen Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaohui Bi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianhui Wu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Congbo Song
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yan Han
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ge Ren
- Ying Da Chang An Insurance Brokers Group CO., LTD, Beijing, 100052, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
42
|
Feng Y, Xiao A, Jia R, Zhu S, Gao S, Li B, Shi N, Zou B. Emission characteristics and associated assessment of volatile organic compounds from process units in a refinery. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115026. [PMID: 32593904 DOI: 10.1016/j.envpol.2020.115026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The accuracy and reliability of volatile organic compound (VOC) emission data are essential for assessing emission characteristics and their potential impact on air quality and human health. This paper describes a new method for determining VOC emission data by multipoint sampling from various process units inside a large-scale refinery. We found that the emission characteristics of various production units were related to the raw materials, products, and production processes. Saturated alkanes accounted for the largest fraction in the continuous catalytic reforming and wastewater treatment units (48.0% and 59.2%, respectively). In the propene recovery unit and catalytic cracking unit, alkenes were the most dominant compounds, and propene provided the largest contributions (57.8% and 23.0%, respectively). In addition, n-decane (12.6%), m,p-xylene (12.4%), and n-nonane (8.9%) were the main species in the normal production process of the delayed coking unit. Assessments of photochemical reactivity and carcinogenic risk were carried out, and the results indicate that VOC emissions from the propene recovery unit and catalytic cracking unit should be controlled to reduce the ozone formation potential; in addition, alkenes are precedent-controlled pollutants. The cancer risk assessments reveal that 1,2-dibromoethane, benzene, 1,2-dichloroethane, and chloroform were the dominant risk contributors, and their values were much higher than the standard threshold value of 1.0 × 10-6 but lower than the significant risk value defined by the US Supreme Court. Based on the VOC composition and a classification algorithm, the samples were classified into eight main groups that corresponded to different process units in the petroleum refinery. In conclusion, this work provides valuable data for investigating process-specific emission characteristics of VOCs and performing associated assessments of photochemical reactivity and carcinogenic risk in petrochemical refineries.
Collapse
Affiliation(s)
- Yunxia Feng
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China.
| | - Anshan Xiao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China
| | - Runzhong Jia
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China
| | - Shengjie Zhu
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China
| | - Shaohua Gao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China
| | - Bo Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China
| | - Ning Shi
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China
| | - Bing Zou
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong, 266101, PR China
| |
Collapse
|
43
|
Ke J, Li S, Zhao D. The application of leak detection and repair program in VOCs control in China's petroleum refineries. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:862-875. [PMID: 32663111 DOI: 10.1080/10962247.2020.1772407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Volatile organic compounds (VOCs) contribute to the formation of ground-level ozone. This causes the phenomena of haze and photochemical smog pollution. Recently, the leak detection and repair (LDAR) program was required to implement in China's petroleum industry on the background of the huge emissions from equipment leaks. This paper analyzed and compared the application of LDAR program in four petroleum refineries and six typical processing units in these refineries. The results showed that non-flanged connectors, flanges, valves, and open-ended lines were the most common components, which accounted for over 99% in these refineries. And over half were non-flanged connectors. About 0.2% to 0.4% of all components were found to leak and emitted up to 91.8% of VOCs, especially the leaking valves and open-ended lines. And over 88.5% of VOC emissions were from high leaking components. The VOC emissions reduced 42% to 57% by repairing 42% to 81% of leaking components. And 90% of the reduction was achieved by repairing high leaking components. Besides, under the same processing capacity, the gas fractionation unit and continuous catalytic reforming unit have a higher average number of components, leaking components and VOC emissions than the other four units. Finally, this paper proposed some problems and suggestions during the implementation of LDAR program. These findings can enhance and improve the effectiveness of LDAR program, and establish a comprehensive VOCs control system, which provides a scientific basis and technical support for the government and refineries. Implications: Recently, China required industries to implement leak detection and repair (LDAR) program to control volatile organic compound (VOC) emissions, especially the petroleum industry. In this paper, we analyzed and compared the LDAR program implementation in four refineries and six typical processing units in these refineries. The results indicate that the implementation of LDAR program was highly effective in petroleum industry. The comparison helps us to enhance the effectiveness of LDAR program by locating the high VOC emission components and units, which provides technical support for the government and refineries in developing specific regulations and plans.
Collapse
Affiliation(s)
- Jia Ke
- College of Chemical Engineering, China University of Petroleum (East China) , Qingdao, People's Republic of China
| | - Shi Li
- College of Chemical Engineering, China University of Petroleum (East China) , Qingdao, People's Republic of China
| | - Dongfeng Zhao
- College of Chemical Engineering, China University of Petroleum (East China) , Qingdao, People's Republic of China
| |
Collapse
|
44
|
Li Z, Ho KF, Yim SHL. Source apportionment of hourly-resolved ambient volatile organic compounds: Influence of temporal resolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138243. [PMID: 32298889 DOI: 10.1016/j.scitotenv.2020.138243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
High temporal-resolution VOC concentration data can provide detailed and important temporal variations of VOC species and emission sources, which is not possible when using coarse temporal-resolution data. In this study, we utilized the positive matrix factorization (PMF) model to conduct source apportionment of hourly concentrations of nineteen VOC species and CO measured at the Mong Kok air quality monitoring station, operated by the Hong Kong Environmental Protection Department, from January 2013 to December 2014. The PMF analysis of the hourly dataset (PMF_Hourly) identified five sources, including liquefied petroleum gas (LPG) (contribution of 45%), gasoline exhaust (21%), combustion (20%), biogenic emission (9%), and paint solvents (6%). The diurnal patterns of VOC emissions from identified sources are likely to be affected by the strength of emissions, variation of the planetary boundary layer height, and photochemical reactions. In addition, the PMF analyses of hourly and 24-hour averaged data of the hourly-resolved data (PMF_Hourly and PMF_Daily) were generally comparable, but the time series of VOC emissions from PMF_Hourly could not be well captured by PMF_Daily for two local VOC sources of gasoline exhaust and LPG. This study highlights the benefit of high temporal-resolution measurement data in apportioning VOC sources, hence providing critical information on VOC emission sources (e.g., diurnal variations) for controlling VOC emissions effectively.
Collapse
Affiliation(s)
- Zhiyuan Li
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Steve Hung Lam Yim
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Stanley Ho Big Data Decision Analytics Research Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
45
|
Li J, Chen Q, Hua X, Chang T, Wang Y. Occurrence and sources of chromophoric organic carbon in fine particulate matter over Xi'an, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138290. [PMID: 32294585 DOI: 10.1016/j.scitotenv.2020.138290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Understanding the characteristics and sources of atmospheric chromophores is essential to assess their impact on climate change and the quality of atmospheric environment. In this work, the fine particulate matter (PM2.5) samples of Xi'an, China in 2017 were analyzed by excitation-emission matrices and parallel factor analysis (EEM-PARAFAC) method to obtain the species, content, sources and seasonal variation characteristics of atmospheric chromophores. The results showed that humic-like (HULIS) chromophores and polycyclic aromatic hydrocarbons-like (PAHs-like) chromophores were the most abundant chromophores in the samples, accounting for 42% and 33%, respectively. With the aggravation of air pollution, the relative content of low-polarity chromophores increased markedly, while the relative content of polar chromophores decreased. The concentrations of atmospheric chromophores exhibited obvious seasonal variation characteristics: high in winter and low in summer. Similarly, the relative contributions of atmospheric chromophores from each source varied with the season. In addition, special weather and human activities had a significant influence on the source of atmospheric chromophores. Dust source was an important source of atmospheric chromophores, which was susceptible to long-range incoming air masses from northwestern regions in spring. However, the chromophores from the dust source were easily removed by wet precipitation, which was the same as the chromophores from the combustion source. The chromophores from the combustion source were susceptible to human activities. The contribution of combustion source to atmospheric chromophores was reduced due to the implementation of air pollution control policies during the Chinese Spring Festival. In summer, the formation of photochemical secondary chromophores was more significant than in other seasons, and the photochemical secondary chromophores increased due to the formation of liquid phase reactions under high relative humidity conditions.
Collapse
Affiliation(s)
- Jinwen Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xiaoyu Hua
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tian Chang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuqin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
46
|
Zhang F, Shang X, Chen H, Xie G, Fu Y, Wu D, Sun W, Liu P, Zhang C, Mu Y, Zeng L, Wan M, Wang Y, Xiao H, Wang G, Chen J. Significant impact of coal combustion on VOCs emissions in winter in a North China rural site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137617. [PMID: 32325589 DOI: 10.1016/j.scitotenv.2020.137617] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
The measurement of volatile organic compounds (VOCs) was carried out using an online GC-FID/MS at a rural site in North China Plain from 1 Nov. 2017 to 21 Jan. 2018. Their concentrations, emission ratios and source apportionment are investigated. During the entire experiment period, the average mixing ratio of VOCs was 69.5 ± 51.9 ppb, among which alkanes contributed the most (37% on average). Eight sources were identified in the non-negative matrix factorization (NMF) model as short-chain alkanes (13.3%), biomass burning (4.6%), solvent (10.8%), industry (3.7%), coal combustion (41.1%), background (4.5%), vehicular emission (7.7%) and secondary formation (14.2%). In addition to the formation of OVOCs through photochemical reactions, the primary sources, such as coal combustion, biomass burning, vehicular emission, solvent and industry, can also contribute to OVOCs emissions. High OVOCs emission ratios thus were observed at Wangdu site. Primary emission was estimated to contribute 50%, 45%, 73%, 77%, 40%, and 29% on average to acrolein, acetone, methylvinylketone (MVK), methylethylketone (MEK), methacrolein and n-hexanal according to NMF analysis, respectively, which was well consistent with the contribution from photochemical age method. Secondary organic aerosol formation potential (SOAFP) was evaluated by SOA yield, which was significantly higher under low-NOx condition (13.4 μg m-3 ppm-1) than that under high-NOx condition (3.2 μg m-3 ppm-1). Moreover, the photochemical reactivity and sources of VOCs showed differences in seven observed pollution episodes. Among, the largest OH loss rate and SOAFP were found in severe pollution plumes, which were induced primarily by coal combustion. Therefore, mitigation strategies for severe pollution formation should focus on reducing coal combustion emitted VOCs that lead to SOA formation.
Collapse
Affiliation(s)
- Fei Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang Province 314000, China
| | - Xiaona Shang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming, Shanghai 200062, China.
| | - Guangzhao Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Yao Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang Province 314000, China
| | - Di Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Wenwen Sun
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chenglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Limin Zeng
- School of Environmental Science & Engineering, Peking University, Beijing 100071, China
| | - Mei Wan
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang Province 314000, China
| | - Yuesi Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100191, China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gehui Wang
- Institute of Eco-Chongming, Shanghai 200062, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100191, China; Institute of Eco-Chongming, Shanghai 200062, China.
| |
Collapse
|
47
|
Li Q, Su G, Li C, Liu P, Zhao X, Zhang C, Sun X, Mu Y, Wu M, Wang Q, Sun B. An investigation into the role of VOCs in SOA and ozone production in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137536. [PMID: 32145623 DOI: 10.1016/j.scitotenv.2020.137536] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 05/09/2023]
Abstract
In recent years, PM2.5 and O3 pollutions are prevalent in the atmosphere in Beijing. The study on pollution characteristics of VOC, which are important precursors of O3 and secondary organic aerosols (SOA) contributing PM2.5, is of great significance for providing a reference to guide its reduction policy formulation. Herein, the seasonal variation of atmospheric VOCs and meteorological conditions at the sampling frequency of 1 time per hour were continuously measured from March 2016 to January 2017 in Beijing. Using the collected data combined with multiple models, the role of VOCs in SOA and O3 production was investigated. Alkanes were the most abundant species, contributing 54.1-64.7% of the total VOC concentration for four seasons, followed by aromatics, alkenes and acetylene. The SOA potential (SOAP) was highest in winter at 2885.1 μg m-3, followed by autumn, spring and summer. Aromatics were the main contributors to SOAP, accounting for ~98.2% of the total SOAP during the entire observation period. The empirical kinetic modeling approach results showed that O3 production featured the VOC-limited regime in Beijing. Alkenes and aromatics were major contributors to O3 formation potential (OFP), accounting for 33.1-45.6% and 27.2-45.2%, respectively, particularly ethylene and m,p-xylene. Positive matrix factorization results indicated that motor vehicle exhaust was still the largest local source of VOCs, but its proportion was considerably reduced. The potential source contribution function results revealed that regional transport sources of VOC pollution in Beijing mainly came from the northwest and southern areas. Thus, to control PM2.5 and O3 pollution in Beijing, the restriction of alkenes and aromatics emission, accompanied by regional cooperation combined with local control, is essential.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuanqi Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Liu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Zhao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Zhang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xu Sun
- Beijing Urban Ecosystem Research Station, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujing Mu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingliang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Chen Q, Li J, Hua X, Jiang X, Mu Z, Wang M, Wang J, Shan M, Yang X, Fan X, Song J, Wang Y, Guan D, Du L. Identification of species and sources of atmospheric chromophores by fluorescence excitation-emission matrix with parallel factor analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137322. [PMID: 32092515 DOI: 10.1016/j.scitotenv.2020.137322] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/27/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
It is essential to fully understand the physicochemical properties and sources of atmospheric chromophores to evaluate their impacts on environmental quality and global climate. Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy is an important method for directly characterizing the occurrences, origins, and chemical behaviors of atmospheric chromophores. However, there is still a lack of adequate information on the sources and chemical structures of EEM-defined chromophores. This situation limits the extensive application of the EEM method in the study of atmospheric chromophores. Under these adverse conditions, this work uses the analysis of EEM data by the parallel factor (PARAFAC) analysis model and a comprehensive comparison of the types and abundances of different chromophores in different aerosol samples (combustion source samples, secondary organic aerosols, and ambient aerosols) to demonstrate that the EEM method can distinguish among different chromophore types and aerosol sources. Indeed, approximately half of all fluorescent substances can be attributed to specific chemicals and sources. These findings provide an important basis for the study of the sources and chemical processes of atmospheric chromophores by the EEM approach.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jinwen Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoyu Hua
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaotong Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zhen Mu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Mamin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jin Wang
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ming Shan
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Xudong Yang
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Xingjun Fan
- College of Resource and Environment, Anhui Science and Technology University, 233100, Anhui, China
| | - Jianzhong Song
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuqin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dongjie Guan
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
49
|
Lyu X, Guo H, Wang Y, Zhang F, Nie K, Dang J, Liang Z, Dong S, Zeren Y, Zhou B, Gao W, Zhao S, Zhang G. Hazardous volatile organic compounds in ambient air of China. CHEMOSPHERE 2020; 246:125731. [PMID: 31918083 DOI: 10.1016/j.chemosphere.2019.125731] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/13/2019] [Accepted: 12/22/2019] [Indexed: 05/22/2023]
Abstract
Volatile organic compounds (VOCs) are ubiquitous in the atmosphere and the majority of them have been proved to be detrimental to human health. The hazardous VOCs were studied very insufficiently in China, despite the enormous emissions of VOCs. In this study, the concentrations and sources of 17 hazardous VOCs reported in literature were reviewed, based on which the health effects were assessed. In-depth survey indicated that benzene and toluene had the highest concentrations in eastern China (confined to the study regions reviewed, same for the other geographic generalization), which however showed significant declines. The southern China featured high levels of trichloroethylene. Dichloromethane and chloroform were observed to be concentrated in northern China. The distributions of 1,2-dichloropropane and tetrachloroethylene were homogeneous across the country. Basically consistent with the spatial patterns of ozone, the summertime formaldehyde exhibited higher levels in eastern and northern China, and increased continuously. While transportation served as the largest source of benzene and toluene, industrial emissions and secondary formation were the predominant contributors of halogenated hydrocarbons and aldehydes (formaldehyde and acetaldehyde), respectively. The chronic non-cancer effects of inhalation exposure to the hazardous VOCs were insignificant, however the probabilities of developing cancers by inhaling the hazardous VOCs in ambient air of China were quite high. Formaldehyde was identified as the primary carcinogenic VOC in the atmosphere of most regions. The striking results, especially the high inhalation cancer risks, alerted us that the emission controls of hazardous VOCs were urgent in China, which must be grounded upon full understanding of their occurrence, presence and health effects.
Collapse
Affiliation(s)
- Xiaopu Lyu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hai Guo
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Yu Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Fan Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kun Nie
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Juan Dang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhirong Liang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shuhao Dong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yangzong Zeren
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Beining Zhou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei Gao
- Shanghai Meteorological Service, Shanghai, China
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
50
|
Yang G, Liu Y, Li X. Spatiotemporal distribution of ground-level ozone in China at a city level. Sci Rep 2020; 10:7229. [PMID: 32350319 PMCID: PMC7190652 DOI: 10.1038/s41598-020-64111-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/20/2020] [Indexed: 01/24/2023] Open
Abstract
In recent years, ozone (O3) pollution in China has shown a worsening trend. Due to the vast territory of China, O3 pollution is a widespread and complex problem. It is vital to understand the current spatiotemporal distribution of O3 pollution in China. In this study, we collected hourly data on O3 concentrations in 338 cities from January 1, 2016, to February 28, 2019, to analyze O3 pollution in China from a spatiotemporal perspective. The spatial analysis showed that the O3 concentrations exceeded the limit in seven geographical regions of China to some extent, with more serious pollution in North, East, and Central China. The O3 concentrations in the eastern areas were usually higher than those in the western areas. The temporal analysis showed seasonal variations in O3 concentration, with the highest O3 concentration in the summer and the lowest in the winter. The weekend effect, which occurs in other countries (such as the USA), was found only in some cities in China. We also found that the highest O3 concentration usually occurred in the afternoon and the lowest was in the early morning. The comprehensive analysis in this paper could improve our understanding of the severity of O3 pollution in China.
Collapse
Affiliation(s)
- Guangfei Yang
- Institute of Systems Engineering, Dalian University of Technology, Dalian, China.
| | - Yuhong Liu
- Institute of Systems Engineering, Dalian University of Technology, Dalian, China
| | - Xianneng Li
- Institute of Systems Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|